Бесконечная сила. Как математический анализ раскрывает тайны вселенной — страница 49 из 64

, и тогда, когда рассчитала траекторию для первой высадки на Луну. В течение десятилетий ее работа была неизвестна широкой публике. К счастью, сейчас ее новаторский вклад (и вдохновляющая история жизни) широко признаны. В 2015 году в возрасте 97 лет она получила Президентскую медаль Свободы от Барака Обамы. А год спустя NASA назвала в ее честь одно из зданий. На церемонии открытия представитель NASA напомнил[275], что «миллионы людей по всему миру наблюдали за полетом Шепарда, но в тот момент не знали, что расчеты, которые привели его в космос и безопасно вернули домой, выполнены нашей сегодняшней почетной гостьей Кэтрин Джонсон».

Анализ и Просвещение

Ньютоновская картина мира с математикой у руля распространилась далеко за пределы науки. В гуманитарной сфере она сказалась на настроении поэтов-романтиков – Уильяма Блейка, Джона Китса и Уильяма Вордсворта. На шумной вечеринке в 1817 году Вордсворт и Китс среди прочих признали, что Ньютон уничтожил поэзию радуги, сведя ее к разложению луча света в призме. Они подняли бокалы с залихватским тостом: «За здоровье Ньютона и конфуз в математике»[276].

Более теплый прием Ньютону оказала философия, где его идеи повлияли на Вольтера, Дэвида Юма, Джона Локка и других мыслителей эпохи Просвещения. Их захватила мощь рассуждений и успехи его системы, изображавшей Вселенную в виде часового механизма, приводимого в движение причинностью. Его эмпирически-дедуктивный подход, основанный на фактах и работающий на анализе, уничтожил априорную метафизику ранних философов (вспомним Аристотеля). Помимо науки, он наложил свой отпечаток на все концепции Просвещения – от детерминизма и свободы до естественного права и прав человека.

Рассмотрим, к примеру, влияние Ньютона на Томаса Джефферсона – архитектора, изобретателя, фермера, третьего президента Соединенных Штатов и автора Декларации независимости[277]. Отголоски влияния Ньютона прослеживаются по всей Декларации. С самого начала фраза «Мы считаем очевидными истинами» отражает структуру документа. Как Евклид в своих «Началах», а Ньютон – в своих, Джефферсон начал с аксиом, самоочевидных истин, а затем с помощью логики вывел из них ряд неизбежных следствий, важнейшим из которых было право колоний выйти из-под британского правления. Согласно Декларации, такое право предоставляют законы природы и творец природы. (Кстати, обратите внимание на постньютоновский деизм, подразумеваемый в порядке Джефферсона: Бог следует после законов природы и только в подчиненной роли, как «бог природы»[278].) Довод подкрепляется причинами, побуждающими народ к отделению от британской короны. Эти причины играют роль ньютоновских сил, приводящих в движение часовой механизм и неизбежно ведущих к последствиям – в данном случае к Американской революции.

Если вам это кажется слишком надуманным, учтите, что Джефферсон почитал Ньютона. В мрачном акте преданности он приобрел копию посмертной маски ученого. А после ухода с президентского поста писал 21 января 1812 года старому другу Джону Адамсу о том, как приятно уйти из политики: «Я отказался от газет в обмен на Тацита и Фукидида, Ньютона и Евклида и ощущаю себя намного счастливее»[279].

Увлечение Джефферсона идеями Ньютона отразилось и на его интересах в сельском хозяйстве. Он задумался о наилучшей форме отвала плуга[280] (отвал – это криволинейная часть плуга, которая поднимает и переворачивает почву, срезанную лемехом), то есть поставил вопрос в рамках эффективности: какую форму должен иметь отвал, чтобы оказывать наименьшее сопротивление поднимающемуся дерну? Поверхность отвала должна быть горизонтальной в передней части, чтобы он мог поддевать почву, а далее форма должна постепенно искривляться вплоть до перпендикулярности грунту в задней части, чтобы он мог переворачивать почву и отваливать ее в сторону.

Джефферсон попросил своего друга-математика решить эту оптимизационную задачу. Во многом его вопрос напоминал другой, сформулированный самим Ньютоном в «Началах», – о форме твердого тела, оказывающего наименьшее сопротивление при движении сквозь воду. Руководствуясь этой теорией, Джефферсон создал деревянный отвал собственной конструкции и снабдил им свой плуг.



Фонд Томаса Джефферсона в Монтичелло


В 1798 году он сообщал: «Пятилетний опыт позволяет мне сказать, что на практике он соответствует тому, что обещал в теории»[281]. Так ньютоновский анализ пришел на помощь сельскому хозяйству.

От дискретных систем к непрерывным

По большей части Ньютон применял анализ к одному или двум телам – качающемуся маятнику, летящему ядру, обращающейся вокруг Солнца планете. Решение дифференциальных уравнений для трех и более тел было кошмаром, как он понял на собственном горьком опыте. Задача взаимного притяжения Солнца, Земли и Луны уже вызывала у него головную боль. Так что об изучении всей Солнечной системы не могло быть и речи; это выходило за рамки возможностей анализа Ньютона. Как он выразился в одной из неопубликованных работ, «если я не сильно ошибаюсь, одновременное рассмотрение стольких причин движения превышает силу человеческого разума»[282],[283].

Однако, как ни странно, при увеличении числа объектов до бесконечности дифференциальные уравнения снова становились полезны, если эти объекты образовывали сплошную среду, а не дискретное множество. Вспомните разницу: дискретный набор частиц подобен набору шариков, разложенных на полу. Он дискретен в том смысле, что вы можете прикоснуться к одному шарику, потом провести пальцем по пустому пространству, затем коснуться другого шарика и так далее. Между шариками есть промежутки. В непрерывной же среде, скажем, такой, как гитарная струна, все частицы держатся вместе, и вы ведете палец вдоль струны, не отрывая. Конечно, это не совсем так, поскольку струна, как и все материальные объекты, дискретна в атомном масштабе. Но уместнее рассматривать струну как непрерывный континуум. Этот подход освобождает нас от необходимости работать с триллионами и триллионами частиц.

Обращаясь к загадкам движения и изменения непрерывных сред – как вибрируют гитарные струны, создавая музыку, или как передается тепло от горячих мест к холодным, – анализ сделал следующий большой шаг к изменению мира. Однако предварительно он изменился сам. Необходимо было расширить понимание того, что такое дифференциальные уравнения и что они могут описывать.


Обыкновенные дифференциальные уравнения и уравнения в частных производных

Когда Исаак Ньютон объяснял эллиптические орбиты планет, а Кэтрин Джонсон вычисляла траекторию полета космического корабля Джона Гленна, оба использовали класс дифференциальных уравнений под названием обыкновенные дифференциальные уравнения[284]. Слово «обыкновенный» не нужно воспринимать как уничижительное. Этим термином обозначаются дифференциальные уравнения, содержащие одну независимую переменную.

Например, в уравнениях Ньютона для задачи двух тел положение планеты было функцией времени. Планета постоянно меняла свое местоположение в соответствии с соотношением F = ma. Это обыкновенное дифференциальное уравнение определяет, насколько изменится положение планеты через бесконечно малый интервал времени. В этом примере положение планеты – зависимая переменная, поскольку оно зависит от времени – независимой переменной. Точно так же время было независимой переменной в динамической модели ВИЧ Алана Перельсона. Он моделировал, как менялась концентрация вирусных частиц в крови после приема антиретровирусного препарата. Вопрос заключался в изменении во времени: насколько концентрация вируса меняется от момента к моменту. Здесь концентрация играла роль зависимой переменной, а время – независимой.

В целом обыкновенное дифференциальное уравнение описывает, как что-то (положение планеты, концентрация вируса и так далее) меняется на бесконечно малую величину в результате бесконечно малого изменения чего-то другого (например, времени). «Обыкновенным» такое уравнение считается потому, что в нем ровно одна независимая переменная.

Любопытно, что абсолютно неважно, сколько в нем зависимых переменных. Пока независимая переменная одна, уравнение считается обыкновенным. Например, для определения положения космического корабля в трехмерном пространстве нужны три числа: назовем их x, y и z. Они указывают, где (слева-справа, вверху-внизу, впереди-сзади) находится корабль относительно некоторой произвольной точки, именуемой началом координат, или точкой отсчета. Поскольку корабль движется, то x, y и z меняются в зависимости от времени. Таким образом, они являются функциями времени. Чтобы подчеркнуть это, мы могли бы записать их в виде x(t), y(t) и z(t).

Обыкновенные дифференциальные уравнения идеально подходят для дискретных систем, состоящих из одного или нескольких тел. Они могут описывать движение космического корабля, входящего в атмосферу; маятника, раскачивающегося вперед и назад; или одной планеты, обращающейся вокруг Солнца. Загвоздка в том, что нам нужно представить любой объект в идеализированном виде – как точку, бесконечно малый объект без пространственной протяженности. Тогда мы можем считать его точкой с координатами x, y и z. Аналогичный подход срабатывает, когда имеется много точечных частиц: армада крохотных космических кораблей, цепочка маятников, соединенных пружинами, Солнечная система из восьми или девяти планет и бесчисленного количества астероидов. Все такие системы описываются обыкновенными дифференциальными уравнениями.