Другие формы колебаний могут быть сконструированы из бесконечных сумм синусоид. Например, в клавесинах 1700-х струну часто натягивали плектром, придавая треугольную форму, а затем отпускали.
Хотя треугольная волна и имеет угол, ее можно представить в виде бесконечной суммы идеально гладких синусоид. Иными словами, для получения углов не нужны углы. На рисунке ниже я аппроксимировал треугольную волну, показанную пунктиром в нижней части, тремя все более точными приближениями с помощью синусоид.
Первое приближение – это одиночная синусоида с наилучшей возможной амплитудой (наилучшей в том смысле, что она минимизирует общую квадратичную ошибку для разницы с треугольной волной – ту самую меру оптимальности, которую мы встречали в главе 4). Второе приближение – это оптимальная сумма двух синусоид, а третье – наилучшая сумма трех синусоид. Треугольная волна будет удовлетворять соотношению, установленному Фурье:
Эта бесконечная сумма называется рядом Фурье для треугольной волны. Обратите внимание на интересные числовые закономерности в нем. В синусоидах, которыми являются слагаемые, используются только нечетные числа 1, 3, 5, 7…, а соответствующие амплитуды – это величины, обратные квадратам этих нечетных чисел, причем знаки плюс и минус чередуются. К сожалению, я не могу быстро объяснить, почему все устроено именно так; для этого нам пришлось бы углубиться в дебри анализа, чтобы понять, откуда берутся эти волшебные амплитуды. Но главное в том, что Фурье умел их вычислять. Он мог синтезировать треугольную волну и любую иную произвольную сложную кривую из более простых синусоид.
Масштабная идея Фурье лежит в основе музыкальных синтезаторов. Чтобы увидеть, почему это так, рассмотрим звучание какой-нибудь ноты, например ля первой октавы. Для создания такого звука мы можем ударить по камертону, настроенному на колебания с соответствующей частотой 440 Гц. Камертон состоит из рукояти и двух металлических зубцов. Если ударить по нему резиновым молоточком, зубцы начинают колебаться назад и вперед 440 раз каждую секунду. Эти колебания воздействуют на окружающий воздух: когда зубец двигается наружу, он сжимает воздух, а когда назад – разрежает его. В результате создается синусоидальное изменение давления в воздухе, которое наши уши воспринимают как чистый тон, скучный и бесцветный. Ему не хватает того, что музыканты называют тембром. Мы могли бы сыграть одну и ту же ноту ля на скрипке или фортепиано, и они прозвучали бы теплее и красочнее. Несмотря на то что эти инструменты тоже издают колебания с эталонной частотой 440 Гц, они звучат не так, как камертон (и не похоже друг на друга) из-за различных обертонов (это музыкальный термин для волн наподобие sin 3x или sin 5x в вышеприведенной формуле для треугольной волны). Обертоны придают ноте красочности, добавляя частоты, кратные основной. В дополнение к синусоиде с частотой 440 Гц синтезированная треугольная волна включает синусоидальный обертон с втрое большей частотой (3 × 440 = 1320 Гц). Этот обертон не такой мощный, как основная синусоида sin x. Его амплитуда составляет всего 1/9 от основной, а остальные обертоны с другими нечетными числами еще слабее. На музыкальном языке эти амплитуды определяют громкость обертонов. Богатство звучания скрипки связано с определенным сочетанием более тихих и более громких обертонов.
Мощь идеи Фурье состоит в том, что звук любого музыкального инструмента можно синтезировать с помощью бесконечного набора по-разному настроенных камертонов. Все, что для этого требуется, – ударить по ним с нужной силой и в нужное время, и – невероятно – но раздастся звук скрипки, фортепиано или даже трубы или гобоя, хотя мы использовали не более чем бесцветные синусоиды. По сути, именно так работали первые электронные синтезаторы: они воспроизводили звук любого инструмента, сочетая большое количество синусоидальных волн.
В старших классах я брал уроки электронной музыки, и это дало мне представление, на что способны синусоиды. Это было в темные времена 1970-х, когда электронную музыку создавал большой ящик, напоминавший обычный коммутатор. Мы с одноклассниками втыкали кабели в разные разъемы, поворачивали ручки и получали звуки с помощью синусоидальных, прямоугольных и треугольных волн. Насколько я помню, синусоидальные волны обладали чистым открытым звуком, как у флейты. Квадратные звучали пронзительно, как сигналы пожарной тревоги. Треугольные издавали металлический звук. С помощью одной рукоятки мы могли менять частоту волны, повышая или понижая тон. Другой можно было корректировать амплитуду, увеличивая или уменьшая громкость. Подключив сразу несколько кабелей, мы могли складывать волны и обертоны в различных сочетаниях, как это делал Фурье, но для нас этот опыт был практическим: мы слышали создаваемые нами звуки. Мы могли видеть формы волн на осциллографе одновременно с их прослушиванием. Вы можете попробовать найти соответствующие видео в интернете. Поищите нечто вроде звука треугольных волн, и найдете интерактивные демонстрации, которые позволят вам почувствовать, будто вы сидите в моем классе в 1974 году и играете с волнами ради собственного удовольствия.
Еще более значимый аспект работы Фурье состоял в том, что он сделал первый шаг к использованию анализа в качестве предсказателя того, как может двигаться и изменяться континуум частиц. Это был огромный шаг вперед по сравнению с трудами Ньютона о движении дискретного множества частиц. За последующие столетия ученые развили методы Фурье и теперь предсказывают поведение других непрерывных сред – например, флаттера на крыле Boeing 787, внешнего вида пациента после лицевой пластики, потока крови по артериям или перемещения земной поверхности после землетрясения. Сегодня эти методы используются в науке и технике повсеместно. Их применяют для изучения ударных волн при термоядерном взрыве; радиоволн для связи; волн в кишечнике, которые помогают усваивать питательные вещества и перемещать продукты жизнедеятельности в нужном направлении; патологических электрических волн в мозге, связанных с эпилепсией и болезнью Паркинсона; а также волн заторов на автострадах с раздражающим явлением фантомных пробок, когда движение замедляется без всяких видимых причин. Идеи Фурье и их различные вариации позволили объяснить все эти явления с математической точки зрения – иногда с помощью формул, иногда путем сложного компьютерного моделирования, так что мы можем объяснить и предсказать эти явления, а в некоторых случаях и управлять ими или устранить их.
Прежде чем перейти от синусоидальных волн к их двумерным и трехмерным аналогам, давайте выясним, что же делает синусоиды такими особенными. В конце концов, строительными блоками могут быть и другие функции, и иногда они работают лучше синусоидальных волн. Например, чтобы улавливать локальные особенности вроде отпечатков пальцев, ФБР применило вейвлеты. Вейвлеты часто превосходят синусоиды во многих задачах обработки изображений или сигналов – в таких областях, как анализ землетрясений, реставрация или установление подлинности произведений искусства, распознавание лиц.
Так почему же именно синусоидальные волны так хорошо подходят для решения волнового уравнения, уравнения теплопроводности и других дифференциальных уравнений в частных производных? Их преимущество в том, что у них очень специфичные производные. Собственно говоря, производная синусоиды – это та же синусоида, только сдвинутая на четверть цикла. Это замечательное свойство. Оно не выполняется для других типов волн. Как правило, кривая любого рода после дифференцирования изменяется. Ее форма становится другой. Дифференцирование весьма травматический опыт для большинства кривых. Но не для синусоид. После дифференцирования синусоида невозмутимо отряхивается, оставаясь все той же синусоидой. Единственная получаемая ею травма – по сути, и не травма вовсе – это сдвиг волны во времени. Она достигает пика на четверть цикла раньше, чем исходная.
Мы наблюдали несовершенную версию этого явления в главе 4, когда рассматривали увеличение продолжительности светового дня в Нью-Йорке в 2018 году и сравнивали его с ежедневными изменениями продолжительности дня и их скоростью от одних суток к следующим. Мы видели, что обе кривые выглядели примерно синусоидальными, но скорость изменения продолжительности дня создавала волну, сдвинутую на три месяца раньше, чем волна исходных данных. Попросту говоря, самый длинный день в 2018 году был 21 июня, а самое быстрое удлинение дня – на три месяца раньше, 20 марта. Именно этого мы и ожидаем от синусоидальных данных. Если бы данные о длине дня представляли собой идеальную синусоидальную волну и мы бы смотрели на разницу не между сутками, а между соседними моментами, то мгновенная скорость изменений («производная» волна) сама была бы идеальной синусоидой, сдвинутой ровно на четверть цикла. Также из главы 4 мы узнали, почему происходит такой сдвиг на четверть. Это вытекает из глубокой связи между синусоидами и равномерным движением по окружности. (Вы можете вернуться к этим рассуждениям, если сейчас объяснение кажется вам туманным.)
Сдвиг на четверть цикла обладает поразительными следствиями. Это означает, что, взяв две производные, мы дважды сдвинемся на четверть цикла, то есть в общей сложности на половину цикла. А значит, бывший пик превращается во впадину и наоборот. Синусоида перевернулась. В математических терминах это записывается в виде формулы
где символ дифференцирования Лейбница d / dx означает «взятие производной от выражения, стоящего справа». Формула показывает, что взять две производные от синуса равнозначно умножению на –1. Такая замена двух производных простым умножением – фантастическое упрощение. Получение второй производной – полноценная операция анализа, в то время как умножение на – 1 – это школьная арифметика.