Бесконечная сила. Как математический анализ раскрывает тайны вселенной — страница 8 из 64

10t = 10 + t.

Чтобы решить его, вычитаем t из обеих частей и получаем 9t = 10. Делим обе части на 9 и получаем t = 10 / 9 секунды, то есть ровно тот же ответ, что нам дал анализ. Таким образом, с точки зрения анализа в ситуации с Ахиллесом и черепахой нет никакого парадокса. Если пространство и время непрерывны, все прекрасно работает.


Зенон в цифровом мире

В третьей апории под названием «Стрела» Зенон выступает против альтернативной идеи, что пространство и время дискретны[36], то есть состоят из крохотных неделимых частей вроде пикселей пространства и времени. Суть парадокса в следующем: если пространство и время дискретны, то летящая стрела не может двигаться, поскольку в каждый момент (пиксель времени) она занимает некоторое определенное положение в каком-то определенном месте (конкретном наборе «пикселей» в пространстве). Следовательно, в любой конкретный момент стрела не движется. Она также не перемещается между мгновениями, так как, по предположению, между ними нет времени. Поэтому стрела вообще никогда не движется.

На мой взгляд, это самый тонкий и интересный из парадоксов. Философы все еще продолжают его обсуждать, но мне кажется, что на две трети Зенон прав. В мире, где пространство и время дискретны, стрела в полете вела бы себя именно так, как указывает ученый. Она бы странным образом материализовывалась в одном месте за другим по мере того, как время двигалось бы дискретными шажками. И он прав также в том, что, исходя из наших ощущений, реальный мир не таков, во всяком случае не такой, как мы его обычно воспринимаем.

Но Зенон ошибался, полагая, что движение в подобном мире невозможно. Все мы знаем это по собственному опыту просмотра кино и видео на наших цифровых устройствах. Наши мобильные телефоны, цифровые видеорекордеры и компьютерные экраны разрезают все на отдельные пиксели, и тем не менее, вопреки утверждениям Зенона, движение в этих дискретных ландшафтах прекрасно происходит. Когда все «нарезано» достаточно мелко, мы не можем различить слитное движение и его цифровое представление. Если бы мы посмотрели видео с высоким разрешением стрелы в полете, мы бы фактически увидели пиксельную стрелку, которая появляется в одном кадре за другим. Однако из-за ограничений нашего восприятия это выглядит как гладкая траектория. Иногда наши чувства действительно нас обманывают.

Конечно, если нарезать слишком крупными блоками, то разница между непрерывным и дискретным будет заметна, и это нередко утомляет. Подумайте, чем старомодные аналоговые часы отличаются от современных цифровых/механических монстров. На аналоговых часах секундная стрелка перемещается по кругу красиво и равномерно, изображая текучее время, а на цифровых – рывками: тик, тик, тик, изображая скачущее время.

Бесконечность может построить мост между этими весьма различными концепциями времени. Представьте цифровые часы, которые вместо одного громкого «тика» дают триллионы крохотных «тиков» в секунду. Мы уже не сможем отличить такие часы от настоящих аналоговых. Точно так же и с фильмами и видеороликами: пока кадры меняются достаточно быстро – скажем, тридцать раз в секунду, – они создают впечатление плавного потока. А если бы в секунду менялось бесконечное количество кадров, то поток был бы действительно плавным.

Подумайте, как записывается и воспроизводится музыка. Моя дочка недавно получила на 15-летие старомодный проигрыватель Victrola. Теперь она может слушать Эллу Фицджеральд на виниле. Это квинтэссенция аналогового опыта. Все ноты и скеты[37] Эллы текут так же плавно, как и тогда, когда она их пела; громкость меняется непрерывно между тихими и громкими звуками, захватывая весь диапазон между ними, и точно так же плавно меняется высота ее тона. В то же время, когда вы слушаете ее в цифровом формате, все нюансы ее музыки раздроблены на крошечные дискретные шажки и преобразованы в строки из 0 и 1. Но хотя концептуальные различия огромны, наши уши не в состоянии их уловить.

Таким образом, в обычной жизни пропасть между дискретным и непрерывным вполне преодолима, по крайней мере при хорошем приближении. Для многих практических целей дискретное может заменять непрерывное при достаточно мелком разбиении вещей. В идеальном мире анализа мы можем пойти еще дальше. Все непрерывное можно точно (а не приблизительно) нарезать на бесконечно тонкие бесконечно малые части. Это принцип бесконечности. С пределами и бесконечностью дискретное и непрерывное становятся единым целым.


Зенон встречает кванты

Принцип бесконечности просит нас притвориться, что все можно резать и дробить до бесконечности. Мы уже видели, насколько полезными бывают такие представления. Идея пиццы, которую можно разрезать на произвольно тонкие ломтики, помогла нам найти площадь круга. Естественно, возникает вопрос: существуют ли такие бесконечно малые вещи в реальном мире?

Квантовой механике есть что сказать по этому поводу[38]. Этот раздел современной физики описывает поведение природы в самых малых масштабах. Это самая точная физическая теория из когда-либо созданных, и она знаменита своею странностью. Ее терминология – со всеми лептонами, кварками и нейтрино – словно позаимствована у Льюиса Кэрролла. Поведение, которое она описывает, тоже часто бывает необычным. В атомном масштабе могут происходить вещи, которые никогда не случатся в макроскопическом мире.

Рассмотрим, например, с точки зрения квантовой механики загадку стены. Если бы нашим путешественником был электрон, он мог бы с некоторой вероятностью пройти сквозь стену. Сработал бы так называемый туннельный эффект. Такое действительно происходит. В классических терминах этому трудно придать смысл, но с точки зрения квантовой механики объяснение состоит в том, что электроны описываются волнами вероятности, которые, в свою очередь, описываются уравнением, предложенным в 1925 году австрийским физиком Эрвином Шрёдингером. Решение уравнения Шрёдингера[39] показывает, что небольшая часть волны вероятности существует и по другую сторону непроницаемого барьера. Это означает наличие маленькой, но ненулевой вероятности, что электрон будет обнаружен по ту сторону барьера, как если бы он туннелировал сквозь стену. С помощью анализа мы можем рассчитать частоту, с которой происходят такие события, и эксперименты подтвердили прогнозы. Туннельный эффект реален. Альфа-частицы туннелируют, выходя из ядер урана с предсказанной квантовой механикой частотой – это альфа-распад. Туннельный эффект также играет важную роль в процессах ядерного синтеза, которые заставляют Солнце светить, поэтому жизнь на Земле частично зависит и от него. Этот эффект имеет и практические применения: на нем основана работа сканирующих туннельных микроскопов, которые позволяют ученым строить изображения отдельных атомов и манипулировать ими.

У нас нет интуитивного представления о таких событиях на атомном уровне, потому что мы – колоссальные создания, состоящие из триллионов триллионов атомов. К счастью, интуицию может заменить анализ. Вкупе с квантовой механикой он помог физикам открыть теоретическое окно в микромир. Плодами их исследований стали лазеры и транзисторы, микросхемы в компьютерах и светодиоды в телевизорах с плоским экраном.

Хотя квантовая механика во многих отношениях оперирует радикально новыми концепциями, она сохраняет традиционное предположение о непрерывности пространства и времени. Максвелл делал аналогичное предположение в своей теории электромагнитных волн, Ньютон – в теории тяготения, Эйнштейн – в теории относительности. Весь анализ, а следовательно, и вся теоретическая физика опираются на предположение о непрерывности пространства и времени. До сих пор оно приводило к ошеломляющим успехам.

Однако есть основания полагать, что в масштабах гораздо ниже атомных пространство и время теряют непрерывный характер. Мы не знаем, что действительно происходит на этом уровне, но можем строить догадки. Может оказаться, что пространство и время так же «пикселизированы», как в парадоксе Зенона «Стрела», хотя более вероятно, что из-за квантовой неопределенности они вырождаются в беспорядочный хаос. В таких малых масштабах пространство и время могут случайным образом бурлить и волноваться. Они могут меняться, как пузырящаяся пена.

Хотя в вопросе, как представлять пространство и время в этих масштабах, пока согласия нет, есть консенсус в отношении самих этих масштабов. Они определяются тремя фундаментальными константами природы, одна из которых – гравитационная постоянная G Она измеряет силу тяготения во Вселенной. Сначала эта константа появилась в ньютоновском законе всемирного тяготения, а затем в общей теории относительности Эйнштейна. Она будет и в любой теории, которая их заменит. Вторая постоянная ħ (читается «h с чертой») отражает силу квантовых эффектов[40]. Она появляется, например, в принципе неопределенности Гейзенберга и в волновом уравнении Шрёдингера, использующемся в квантовой механике. Третья константа – это скорость света c Это максимальная скорость во Вселенной. Никакой сигнал не может распространяться со скоростью, превышающей c. Эта скорость должна обязательно входить в любую теорию пространства и времени, поскольку связывает их: расстояние равно произведению скорости и времени. В 1899 году отец квантовой теории немецкий физик Макс Планк понял, что есть единственный способ объединить эти фундаментальные константы для получения единицы длины. Он пришел к выводу, что такая единица – естественная «мера длины» во Вселенной. В его честь она именуется планковской длиной[41] и определяется следующим соотношением: