Без своего мнения. Как Google, Facebook, Amazon и Apple лишают вас индивидуальности — страница 14 из 45

Говорит он при этом о ленте новостей Facebook. Вот краткое объяснение для той небольшой части человечества, которая, по-видимому, еще сопротивляется: лента новостей содержит в обратном хронологическом порядке все обновления статусов, статьи и фотографии, опубликованные вашими друзьями в Facebook. Лента новостей должна нравиться, но при этом решать одну из фундаментальных проблем современности: нашу неспособность справиться с постоянно растущим, вечно стоящим перед нашими глазами массивом информации. Кто, говорит теория, лучше посоветует нам, что читать и смотреть, чем наши друзья? Цукерберг хвастался, что лента новостей превратила Facebook в «газету, настроенную на вкусы конкретного читателя».

К сожалению, наши друзья полезны нам в качестве информационных фильтров только до определенной степени. Оказывается, они публикуют многое. Если бы мы просто читали все их рассуждения и проходили бы по ссылкам на рекомендуемые статьи, мы были бы перегружены информацией почти так же, как раньше. Поэтому Facebook решает за нас, что нам следует читать. Алгоритмы компании фильтруют тысячи записей, потенциально доступных нам. Затем решают, что мы могли бы захотеть прочесть в первую очередь из отобранных ими нескольких десятков источников.

Алгоритмы невидимы по определению. Но как правило, мы можем почувствовать их присутствие – ощутить, что где-то на глубине мы все-таки взаимодействуем с машиной. Именно это сообщает алгоритму Facebook его силу. Многие пользователи – 60 % согласно лучшим исследованиям – ни в какой мере не подозревают о его существовании. Но даже если они и догадываются, это не имеет значения. Он непрозрачен до предела. Когда компания признает его существование перед журналистами, она умудряется непрозрачными описаниями затуманить предмет еще больше. Например, мы знаем, что когда-то алгоритм назывался EdgeRank, но Facebook этот термин больше не использует. Быть безымянным для этого алгоритма нормально. Он разросся до состояния практически непроницаемых джунглей. Чтобы определить, что увидят пользователи, он интерпретирует свыше ста тысяч так называемых «сигналов». Некоторые сигналы относятся ко всем пользователям Facebook, некоторые определяют привычки конкретного пользователя и его друзей. Может быть, Facebook сам уже не до конца понимает работу своих алгоритмов: код, все шестьдесят миллионов строк, представляет собой палимпсест, на который инженеры записывают новые команды слой за слоем. (Это не является чем-то присущим исключительно Facebook. Джон Кляйнберг, специалист по информатике из Корнеллского университета, был соавтором статьи, где говорилось: «Мы, вероятно впервые в истории, создали машины, работу которых не понимаем сами… На глубинном уровне мы не понимаем, каким образом они производят наблюдаемое нами поведение. Именно в этом состоит суть их непонятности». Более всего поразительно, что «мы» в этой цитате относится к авторам кода).

В качестве аналога этого алгоритма полезно представить себе один из первых компьютеров – с нервно мигающими лампочками и длинными рядами рукояток на передней панели. Чтобы регулировать работу алгоритма, инженеры постоянно вносят небольшие изменения, поворачивая рукоятку то здесь, то там на один-два щелчка. Малейшим сдвигом воображаемого колесика Facebook меняет то, что пользователи читают и видят. Он может заполнить всю ленту фотографиями, сделанными друзьями, может понизить посты с саморекламой, исключить то, что считает фальшивкой, может отдать предпочтение текстам или видео или же обратить внимание на статьи из New York Times, BuzzFeed и тому подобных изданий. Взяв мелодраматический тон, можно было бы сказать, что Facebook постоянно определяет нашу картину мира: регулирует качество новостей и мнений, пропускаемых через фильтр, меняет качество предлагаемых нам материалов из области политики и культуры, чтобы удержать наше внимание еще немного.

Но каким же образом инженеры определяют, какое именно колесико повернуть и на сколько? Существует целая дисциплина, «наука о данных»[40], цель которой – указать пути написания и совершенствования алгоритмов. В Facebook есть целое подразделение, куда людей переманивали из академических кругов, и его задача – ставить эксперименты на пользователях. Это предел мечтаний статистика: одни из самых крупных за всю историю человечества наборы данных, возможность экспериментировать на математически значимых выборках. Когда Кэмерон Марлоу, бывший глава этого подразделения, описывал открывшиеся ему возможности, он просто светился от удовольствия. «Впервые, – говорил он, – у нас есть микроскоп, не только позволяющий исследовать социальное поведение с очень высокой избирательностью, но и экспериментировать на миллионах пользователей».

Facebook предпочитает хвалиться своими экспериментами в принципе, а не сообщать их подробности. Но примеры, утекшие за пределы лабораторий, существуют. Так Facebook решила выяснить, заразны ли эмоции. В рамках этого эксперимента компания пыталась манипулировать эмоциональным состоянием пользователей: для этого она удаляла из ленты одной группы пользователей слова с позитивной окраской, а из ленты другой – с негативной. Опыт показал, что обе группы писали посты, отражавшие настроение соответствующей ленты. Этот эксперимент был единодушно осужден как бесчеловечный, но он не выбивался из череды остальных. Один из членов группы, занимающейся наукой о данных, признавался: «Эксперимент мог поставить любой наш сотрудник. Они все время пытаются изменить человеческое поведение».

Нет никаких сомнений в том, что Facebook сосредоточила в своих руках огромную эмоциональную и психологическую власть. По крайней мере у самой компании сомнений в этом нет. Facebook хвасталась, как увеличила в одном случае явку на выборы, а в другом – донорство органов, чуть усилив воздействие, вызывающее «добродетельное» поведение. Она даже публиковала свои результаты в рецензируемых журналах: «Возможно, что увеличение явки избирателей на 0,6 % между 2006 и 2010 гг. было вызвано одним сообщением на Facebook». Ни одна другая компания не хвалилась так открыто своим влиянием на механизмы демократии, и по понятным причинам. Это слишком большая власть, чтобы доверить ее корпорации.

Результаты всех этих экспериментов Facebook складываются друг с другом. Компания считает, что овладела социальной психологией и знает о своих пользователях больше, чем они знают о себе самих. Для любого из них Facebook может предсказать расу, сексуальную ориентацию, семейное положение и отношение к наркотикам по одним только лайкам. Мечта Цукерберга – проанализировать эти данные таким образом, чтобы сделать главное открытие: «фундаментальный математический закон, определяющий социальные отношения между людьми и устанавливающий, кто и в какой мере кому небезразличен». Это, конечно, задача на далекую перспективу. В ближайшее же время Facebook будет ставить опыты, постоянно выясняя, к чему мы стремимся всей душой и что предпочитаем не замечать, безостановочно совершенствуя свою способность показывать нам то, что мы хотим, и даже то, что мы еще сами не знаем, что хотим. Компанию, похоже, мало заботит, достоверная это информация или нет, сообщение из авторитетного источника или текст очередного сторонника теории заговора. Толпа получает то, чего хочет и чего заслуживает.

Автоматизация мышления: конечно, сейчас эта революция только начинается. Но можно предвидеть, к чему она приведет. Алгоритмы заменили людей во многих бюрократических, конторских задачах и скоро начнут вытеснять их из более творческих областей. В Netflix они определяют, фильмы каких жанров лицензировать для проката. Некоторые службы новостей используют алгоритмы для написания заметок о преступлениях, бейсбольных матчах и землетрясениях – то есть для решения наиболее механических репортерских задач. Алгоритмы создавали произведения изобразительного искусства, сочиняли симфоническую музыку – во всяком случае, создавали нечто приближенное.

Это в высшей степени пугающее развитие событий, во всяком случае для тех, кто работает в перечисленных областях. Если алгоритм способен воспроизвести акт творческого мышления, нет необходимости ценить его в человеке. Зачем терять время и силы на мучительный и неэффективный процесс написания картины или стихотворения, если компьютер может создать произведение, выглядящее на первый взгляд не хуже, но при этом без усилий и за долю секунды? К чему рынок высокого искусства с его вздутыми ценами, если оно может быть дешево и доступно? Ни одна сфера деятельности человека не устояла перед автоматизацией, так почему же дела в искусстве должны обстоять иначе?

Инженерный ум не в состоянии смириться с фетишизацией слов и изображений; ее не смогут оправдать ссылки ни на таинство искусства, ни на моральную сложность, ни на яркость эмоционального выражения. Он воспринимает людей как данные, как элементы системы, как абстракции. Вот почему Facebook не испытывает сомнений относительно своих постоянных экспериментов на пользователях. Цель всей этой работы – сделать людей предсказуемыми, предвидеть их поведение и упростить таким образом задачу манипулирования ими. Если представить себе это хладнокровное отношение к миру, чуждое непредсказуемости человеческой жизни, ее тайны, легко понять, почему многовековые моральные устои воспринимаются его носителями как досадное препятствие, почему идея неприкосновенности частной жизни получает так мало значения в расчетах инженера, почему издательское дело и журналистика постоянно оказываются его мишенью.

Facebook никогда не воспользовалась бы такой формулировкой, но алгоритмы предназначены для того, чтобы истребить свободу воли, избавить людей от бремени выбора, обратить их в нужном направлении. Алгоритмы питают чувство всемогущества, самодовольную веру в собственную силу менять поведение человека так, что он сам не чувствует руки, направляющей его. Эта опасность всегда была заключена в инженерном стиле мышления: выйти за пределы своего призвания, а именно – создания неодушевленных вещей, и начать совершенствовать общество по своему разумению. Мы, люди, оказываемся винтиками и гайками гигантской машины.