Как же учителям, родителям и руководителям определить методы, расширяющие и поддерживающие позитивный посыл относительно роста и обучения? Решение — в многоплановом подходе к обучению и преподаванию. Этот подход — результат последних достижений нейробиологии, к которым пришли ученые из Стэнфорда и других университетов, а также множества экспериментов, проведенных среди учеников средних и старших классов.
В Стэнфорде я сотрудничала с нейробиологами, в частности с группой исследователей под руководством Вино Менона с медицинского факультета. Ланг Чен, нейробиолог из лаборатории Менона, регулярно выступает на канале Youcubed. Стэнфордские ученые изучают активность нейронных сетей, фокусируясь на способах работы мозга — например, при решении математических задач. Ученые обнаружили, что даже при решении простого арифметического примера задействуются пять участков мозга, два из которых — нейронные пути зрительной коры[90]. По дорсальному зрительному пути передается визуальная информация о количестве объектов (рис. 4.1).
Рис. 4.1. Нейронная сеть для освоения ментальной математики
Вместе с другими нейробиологами они обнаружили, что связность разных участков мозга ускоряет процесс обучения и улучшает результаты. В 2013 году Парк Джун Ку и Элизабет Брэннон рассказали об исследовании, в ходе которого обнаружили, что при работе с символами (в частности, с числами) и с визуальной и пространственной информацией в мозге задействуются разные отделы[91]. Также они выяснили, что эффективность обучения возрастает, если два этих участка взаимодействуют друг с другом. Мы можем воспринимать математические концепты как через числа, так и через слова, визуальные образы, модели, алгоритмы, таблицы и графики, через движение и касание, а также другие формы. Если мы применяем два или более способов усвоения материала, то тем самым максимизируем эффект обучения и участки мозга, отвечающие за каждый из этих способов, «общаются» между собой. Об этих открытиях вплоть до недавнего времени было мало известно, их результаты практически не применялись в преподавании.
Ученые, занимающиеся взаимодействием разных участков мозга, для анализа использовали математические примеры, но их выводы можно экстраполировать на все области знания. Обучение новому требует активации нескольких нейронных путей — например отвечающих за внимание, память, размышление, коммуникацию, визуализацию. Подходя к новому знанию многопланово, мы стимулируем все эти пути, укрепляем мозг и делаем процесс обучения максимально эффективным.
Удивительные факты о пальцах
Новые подробности о том, как мозг обрабатывает математические данные, порой удивительны. Так, в рамках одного исследования удалось доказать значение пальцев для усвоения математики. Илария Бертелетти и Джеймс Бут проанализировали отдельный участок мозга — соматосенсорную систему, отвечающую за обработку информации от рецепторов, расположенных в том числе на пальцах. Ученые обнаружили, что когда подросткам 8–13 лет дают сложные задачи на вычитание, соматосенсорная система активизируется, даже если школьники не задействуют пальцы[92]. Примечательно, что у нас в голове возникает образ пальцев, даже когда мы не используем их при вычислениях. Этот участок мозга, согласно тому же исследованию, в значительной степени вовлечен и в решение более сложных примеров, включающих большие числа и подразумевающих несколько операций.
Нейробиологи установили связь моторики с математическим мышлением, особо выделив значимость «пальцевого восприятия». Проверить его можно следующим образом. Спрячьте одну ладонь под книгу или под стол и попросите кого-нибудь дотронуться до кончиков ваших пальцев. Люди с хорошим восприятием легко определят, какого именно пальца коснулись. Более сложный тест предполагает прикосновение в двух разных точках — на кончике пальца и второй фаланге. Вот несколько интересных фактов.
• Уровень пальцевого восприятия у студентов колледжей позволяет спрогнозировать результаты тестов на счет[93].
• Пальцевое восприятие в первом классе надежно предсказывает успеваемость по математике во втором классе[94].
• Долговременные наблюдения подтвердили, что высокой успеваемостью по математике музыканты, по всей видимости, обязаны хорошо развитому пальцевому восприятию[95].
Нейробиологи установили, насколько важно для маленьких детей развивать мелкую моторику: эта способность выполнять мелкие и точные движения проявляется при счете на пальцах. Однако многие учителя категорически против обучения счету таким способом, а сами учащиеся часто считают его ребячеством. Я пыталась изменить эту практику, рассказывая о достижениях нейробиологов в СМИ, соцсетях и журналах. Кроме того, я участвую в деятельности междисциплинарной группы нейробиологов, инженеров и педагогов, работающей над созданием небольших роботов, развивающих восприимчивость пальцев у маленьких детей. Новые открытия указывают на необходимость иного подхода к преподаванию — более физически ориентированного, многопланового и креативного, нежели те, что использовались раньше и применяются сейчас.
А как же новаторы?
В процессе исследования способов, с помощью которых люди приходят к высоким результатам, ученые выявили новые интересные данные о взаимодействии разных участков мозга. Некоторые выдающиеся таланты, в частности Моцарт, Кюри и Эйнштейн, часто считаются гениями по умолчанию. Андерс Эрикссон, Дэниел Койл и другие психологи показали, что великие достижения этих удивительных людей — следствие упорного, многолетнего, самоотверженного труда.
Андерс Эрикссон исходит из предположения, будто Моцарт родился с особым даром, что впоследствии якобы способствовало созданию гениальных произведений, и анализирует его деятельность в раннем возрасте. Андерс отмечает, что Моцарт, по словам современников, обладал идеальным слухом. Это классический пример врожденного дара, поскольку идеальный слух в норме встречается у одного из 10 тысяч человек. Однако внимательное изучение биографии Моцарта показывает, что он активно выполнял упражнения для развития идеального слуха уже с трех лет[96].
Японский психолог Аяко Сакакибара обнародовал результаты исследования, в ходе которого 24 учащихся тренировали идеальный слух. Для определения аккордов дети, услышав звуки, брали разноцветные флажки и делали это до тех пор, пока не смогли правильно назвать каждый аккорд. В ходе эксперимента каждый участник развил идеальный слух[97]. Это хороший пример того, что качество, воспринимаемое многими как дар, на самом деле развивается в ходе особого метода обучения, который задействует множество нейронных путей, в данном случае соединивших звуки и визуальные образы.
Альберт Эйнштейн, человек, которого, возможно, чаще всего называют гением, исключительно эффективно использовал ошибки для обучения. Вот несколько моих любимых цитат[98].
• Человек, который никогда не совершал ошибок, никогда не пробовал ничего нового.
• Все это так не потому, что я такой умный. Это все из-за того, что я долго не сдаюсь при решении задачи.
• У меня нет особого таланта. Я просто страсть как любопытен.
• В центре проблемы лежит возможность[99].
По этим и другим цитатам Эйнштейна очевидно, что он обладал мышлением роста, хотя такого концепта при его жизни еще не существовало. Эйнштейн говорил о принятии трудностей, длительной работе над сложными задачами, любопытстве, совершении ошибок и отказе от таких фиксированных понятий, как талант и одаренность. Он также визуализировал идеи и часто говорил, что мыслит всегда визуально, а потом с трудом преобразует свои зрительные образы в слова и символы[100].
Эйнштейн оказал масштабное воздействие на науку, и неудивительно, что его считают гением. У него не было инструментов и технологий, которыми мы располагаем сегодня, но одной силой мысли он предсказал, что черные дыры, вращаясь рядом друг с другом, создают гравитационную «рябь» (складки) в искривленном пространстве-времени. Потребовались 100 лет и, как писали в National Geographic, «огромная вычислительная мощность», чтобы доказать его правоту. И при всех своих выдающихся достижениях Эйнштейн всегда подчеркивал, что это итог упорной тяжелой работы и визуального подхода к знанию, а не следствие дара или особого таланта. Эйнштейн использовал принцип безграничности в обучении и жизни, и это помогло ему во всех областях.
В недавней статье в журнале National Geographic «Что делает гения?»[101] рассказывается об изучении мозга Эйнштейна, изображения которого содержатся на 46 микрослайдах и хранятся в музее в Филадельфии. Исследователи пытались обнаружить какие-либо особенности. Многие посетители разглядывают мозг Эйнштейна и не видят в нем ничего примечательного. Группа ученых во главе со Скоттом Барри Кауфманом из Института воображения (Imagination Institute) выбрала другой подход, изучая мозг живых людей, развивших невероятные способности. Главным отличием мозга новаторов оказалось наличие большего количества активных связей между разными участками мозга, большего количества связей между полушариями и, соответственно, большей гибкости мышления по сравнению с обычными людьми[102]. Высокая коннективность — отличительная черта мозга новаторов — не считается врожденным свойством, она развивается в процессе обучения.