К сожалению, математика быстрее любых других школьных предметов подрывает у учащихся веру в себя. Отчасти это происходит вследствие неправильных методов преподавания, что уже в первом классе вызывает такие сильные переживания, как у Холли. Но еще и из-за стереотипа, распространенного в нашем обществе: люди, успевающие по математике, действительно умны, а те, кому она дается с трудом, умом не блещут. На многих детей это действует деструктивно; среди таких оказалась и Холли. К сожалению, случай с Холли вряд ли является исключением. Вот как негативный опыт в математике повлиял на нее.
Он оказался поистине грандиозным. Всю свою жизнь я жила с клеймом неуверенности в себе.
К счастью, Холли усвоила новые представления о себе и своих способностях к обучению, что помогло ей освободиться от деструктивных установок. Решающим шагом стало понимание, что математические задачи можно решать разными способами. В этом и заключается значимость многопланового подхода к усвоению новых знаний. Холли признаётся в интервью:
Теперь математика стала для меня самым креативным предметом, потому что все можно «разобрать» на части, а потом сложить обратно и ты можешь целый час обсуждать, как сложить 13 и 12!
Холли заново выучила математику, и подтолкнули ее к этому ученики и их новое мышление. Когда дети начали решать задачи по-другому, она осознала, что математика совсем не тот предмет, каким она его воспринимала ранее. Она стала экспериментировать с примерами, и вскоре успеваемость всего класса выросла. После нескольких лет успешного преподавания Холли пригласили на должность куратора математического образования в округе — значимое достижение для человека, который раньше боялся математики. Теперь Холли отмечает, что ее метод преподавания призван развивать мышление роста, она дает сложные задачи, требующие многопланового подхода, и постоянно повторяет ученикам, что они преодолеют все трудности.
Помимо изменений в методиках преподавания, избавление от пагубных установок перестроило и формат коммуникации с людьми, еще раз подтвердив выгоду неодномерного подхода к жизненным ситуациям. Раньше Холли приходила на совещания в страхе, что она не знает того, что ей необходимо знать, и с уверенностью, что она должна быть экспертом в своей области. Сбросив оковы фиксированного мышления, она стала увереннее чувствовать себя на встречах и теперь чаще готова идти на риск:
Я не боюсь произносить подобные вещи. Я могу сказать другому педагогу: «Слушай, я застряла. Давай подумаем об этом вместе!»
Открытость новым вызовам и принятие неопределенности, вероятно, общая реакция на обретение свободы. Люди осознают, что бороться с трудностями — хорошо, это признак не слабости мозга, а его роста. В результате усиливается уверенность в себе, желание поделиться даже теми идеями, в правильности которых человек не до конца уверен. Одна из самых печальных системообразующих характеристик фиксированного мышления — страх оказаться неправым. Мозг человека буквально блокируется этим страхом. А подход, основанный на многоплановости, росте и борьбе с трудностями, освобождает. Холли призналась: «У меня появилось столько идей, потому что я позволила им родиться».
Важное преимущество многопланового подхода к работе и жизни в целом — уверенность, что если перед вами возникли препятствия, вы всегда найдете обходные пути. Многие взрослые, с которыми я беседовала, признавались, что они больше не останавливаются, сталкиваясь с вызовами и преградами, а ищут другую стратегию. Многоплановый подход к знанию показывает, что к результату можно прийти разными путями и одного единственно верного не существует, в любом случае есть несколько способов двигаться вперед.
Очень важно, что теперь идеи рождаются у Холли свободнее. Это одно из проявлений глубинных преобразований, происходящих с нами при освоении ключевых навыков обучения. В какой бы сфере вы ни работали, в образовании или в любой другой, понимание ограничений фиксированного мышления и возможностей для обучения и роста сделает вашу жизнь многограннее. Вырастет и уверенность в себе, и адаптивность, и удовлетворенность работой и отношениями с людьми.
Холли призналась, что ее взаимодействие с окружающими улучшилось, она перестала сомневаться в себе и впадать в депрессию. Удивительно, но это произошло после того, как она смогла по-новому взглянуть на математику и свои отношения с ней.
Для Холли ключевым фактором стало представление о математике как о дисциплине, к которой можно подойти с разных сторон, и осознание ценности разнообразных подходов. Открывая свой разум и начиная видеть безграничный потенциал — свой и других людей, вы вскоре обнаружите, что эффект будет сильнее, если осваивать материал с разных сторон. Многомерность — идеальное дополнение к мышлению роста. Вместе они дают гораздо более выраженный эффект.
Одним из факторов успеха нашего летнего лагеря, обеспечившего за смену в 18 дней прогресс, который соответствовал 2,7 года в школе, стал многоплановый подход. Когда год спустя мы опрашивали учащихся, кто-то из них рассказывал, что даже когда им задают прорешать целую страницу примеров, они забирают ее домой и решают вместе с родителями визуальными методами. Одна девочка с сожалением поведала, что уроки математики стали ей скучны, ведь учитель всегда требует решать задачи стандартно. Мне было печально слышать это, но я понимаю, что девочка уже знает о существовании разных типов мышления, а не одного-единственного — учительского, и, хотя ей не позволяют пользоваться собственными методами, не забывает об их значимости. Девочка была разочарована, но перспектива свободного мышления по-прежнему оставалась для нее реальной.
Часто ученики не знают, как подступиться к упражнениям, которые им задают. Это порождает негативные мысли как о себе, так и о своем обучении. Но когда те же задачи формулируются в доступной для всех форме, при этом выводят на новый уровень трудностей, каждый находит свои методы решения и достигает цели.
В лагере мы всегда использовали задания такого типа и поощряли разные способы рассуждения, разное видение задач, разные стратегии и методы. Мы приветствовали бурные дискуссии, в ходе которых ученики делились своим видением и решением, а мы обсуждали и сравнивали разные подходы. Благодаря этому занятия проходили эффективно, а у детей появлялась мотивация к изучению предмета. Мы обеспечивали им возможность подступиться к задаче, показывали, какими способами можно получить ответ. В этом и заключается союз мышления роста и многоплановости, которого так часто не хватает в классах, дома и в офисах.
Учащимся очень трудно освободить сознание и развивать безграничный разум, когда в школе им не дают ничего, кроме стандартных тестов и контрольных, а также постоянно напоминают о фиксированности мышления[114]. Учителя, с которыми я беседовала, отличаются от большинства своих коллег, потому что понимают ценность снятия ограничений. Для достижения этой благородной цели они сочетают работу, стимулирующую рост мозга и мышление роста, с подходом к преподаванию и оценке, который способствует прогрессу и любознательности.
Я использую многоплановый подход в преподавании математики студентам. Мы проводим десять недель, рассматривая математические концепции визуально, иногда объектно, а также алгоритмически и с помощью чисел. Все это укрепляет нейронные связи в мозге. Вот анонимная оценка курса от одного из студентов.
Математика всегда существовала на бумаге, по крайней мере для меня. С началом этого курса задачи перешли в какое-то трехмерное пространство. Стены комнаты, обратная сторона бейджа, который вы попросили сделать, блокнот для гуманитарных предметов — эти квадраты и диаграммы заполнили ту часть мозга, которую я отводил для счета. Раньше всё было одномерным, имело одно решение. Теперь пространство, оставляемое для математики, расширилось экспоненциально.
Другие студенты также отмечали, что благодаря визуальному, креативному подходу к математике, знаниям из сферы нейробиологии, информации о типах мышления их мозг стал более пластичным и это преобразило их жизнь и позволило добиться успехов. Они смогли взять самые разные курсы в Стэнфорде.
Жизнь Марка Петри радикально изменилась после того, как он осознал преимущества борьбы с трудностями и разнообразных подходов к изучению материала. Марку уже за 60. В детстве он попал в аварию, в результате которой частично стал инвалидом. Его мать отказалась признать, что сын никогда не восстановится и его придется отдать в коррекционную школу, и сама занялась его лечением. Координацию она развивала, бросая сыну мешочки с фасолью, а он должен был ловить их. Когда Марк подрос, он стал учиться кататься на коньках. Постоянно падал и поднимался, падал и вставал вновь. Детские годы сформировали у него мышление роста: «Без этого, — говорит он, — я бы вообще ничего не добился». Когда Марк прочитал о преодолении трудностей в моей предыдущей книге, он тут же связал это с собственной жизнью и с тем, как такая борьба сформировала его личность.
Мышление роста сформировалось у Марка еще в детские годы, но именно благодаря вебинару на канале Youcubed он усвоил язык, на котором смог разговаривать с учениками восьмого класса. До посещения вебинара Марк преподавал по не самым вдохновляющим учебникам. После летнего вебинара он вернулся в школу в Санта-Ане и поменял методику.
Каждый понедельник он начинал урок с видео, героем которого был человек с мышлением роста. В день нашего интервью Марк показывал ролик о 15-летнем подростке, разработавшем тест на рак поджелудочной железы. Он находит эти видео в интернете, и все они демонстрируют тип мышления в действии. Каждую среду Марк представляет свой любимый «нет»-пример — математическую задачу с ошибками, которые учащиеся должны обнаружить сами. По пятницам ученики работают над математическими и художественными проектами. Помимо этого еженедельного плана занятий, Марк применяет многоплановый подход постоянно, призывая учеников рисовать комиксы для иллюстрации математических концепций либо визуально представлять математические модели, а потом спрашивает, что именно те видят. И на уроках математики, и на уроках по творчеству он показывает ученикам картины и рисунки, после чего также спрашивает, что они видят. Марк предлагает школьникам создавать коллажи из узоров и орнаментов, изучать работы великих мастеров, анализируя, к примеру, проявления симметрии в их произведениях.