Безграничный разум. Учиться, учить и жить без ограничений — страница 21 из 36

Ранее лишь 6% учеников Марка осваивали математику на базовом уровне. После внедрения многопланового подхода этот показатель возрос до 70%. Марк много рассказывал об использовании разнообразных и прекрасных методов преподавания математики — через искусство, кино и другие креативные способы. Я спросила у него, пользовался ли он при этом учебником. Марк объяснил, что ему удавалось добиваться гораздо большего, если школьники изучали материал учебника не более 25–30 минут, а оставшееся от 55-минутного урока время посвящали другим проектам. Это решение кажется мне разумным.

Марк принял подход, основанный на мышлении роста, не только в преподавании математики, но и в жизни. Несколькими годами ранее, когда его сын был еще маленьким, у его жены обнаружили рак и ей пришлось перенести пять операций. Несмотря на хирургические вмешательства и полтора года химиотерапии, она продолжала вести адвокатскую практику. В то время Марку приходилось напрягать все силы, чтобы заботиться о жене, сыне и преподавать. По признанию самого Марка, он был «максимально позитивным, насколько это возможно». Сейчас его сын учится в колледже, а у жены наступила ремиссия, и по субботам они вместе пекут печенье для живущих в приютах. А жена к тому же вяжет головные уборы для женщин, проходящих химиотерапию. Марк пришел к тому типу мышления, который я наблюдаю у всех интервьюируемых, выбравших безграничный подход. Этот подход заключается в том, чтобы превращать негатив в позитив. Он упоминал о принципе, который в иудаизме называется «тиккун олам» — «исправление мира» — и также связан с мышлением роста. Марк рассуждает так: «Для меня это как задаваться вопросом: “Зачем я на этой планете? Зачем я здесь? Зачем я в этом классе? Должна быть какая-то причина”».

Позитивный подход к жизни, демонстрируемый даже в самых тяжелых ситуациях, очень вдохновляет. Изменения, внедренные Марком на занятиях, не только заметно повысили успеваемость учащихся, но и повлияли на его коллег-педагогов. Когда учителя шестых-седьмых классов увидели, каких успехов добился Марк в восьмом классе, они начали следовать некоторым его идеям и также заметили, как возросла успеваемость их учеников.

Использовать многоплановый подход может преподаватель любого предмета. В конце книги вы найдете ресурсы для визуального представления математики. Если учителя строят урок по-старому, дети могут освоить этот новаторский подход самостоятельно.

Я уже говорила о летней смене с 84 школьниками, приехавшими в кампус Стэнфорда. Когда на следующий год мы опросили тех же учеников, один мальчик сообщил, что он лучше понял концепцию объема, потому что теперь думает о кубиках объемом в 1 см3 как о кусочках сахара, с которыми мы работали в лагере. К сожалению, многие из этих учеников не получают возможности продолжить визуальную работу с математическими объектами в своей школе, но после этих 18 дней их взгляд на обучение изменился и они могут применить полученные знания не только для учебы, но и в жизни.

Педагог Лея Хэйворт рассказала в интервью об огромных изменениях, которые произошли с учащимися, когда вместо учебников с правилами и упражнениями она вручила им толстые чистые блокноты и предложила «поиграть» с концепциями, рисовать их и размышлять над ними. Предоставление учащимся пространства для творчества, где они могут думать, исследовать, пробовать, — идеальное дополнение к многоплановому подходу в изучении материала.

Несколько лет назад я провела недельный эксперимент в местной школе — серию визуальных и творческих уроков математики, доступ к которым мы предоставили на нашем канале Youcubed. Когда после урока я шла по коридору, меня догнала мама одной ученицы и спросила, что мы делали последние несколько дней на уроках математики. Ее дочь, всегда ненавидевшая этот предмет и неспособная его усвоить, поменяла мнение! Теперь она видела свое будущее в математике. Слышать это было очень приятно, ведь мне известно: когда дети меняют отношение к собственным возможностям и принимают новые подходы, их жизненный путь также меняется.

Три ключевых навыка обучения, связанных с мышлением роста и вызовами, критически важны для высвобождения личностного потенциала. Вне надлежащего контекста для креативного развития мозга эти тезисы могут быть восприняты как досадные и контрпродуктивные. Когда человек с мышлением роста сталкивается с ограничениями мира фиксированного мышления, он теряет часть своего потенциала к переменам. Решение, как мы теперь знаем, лежит в плоскости многопланового обучения — это ключевой навык № 4. Взгляд на тему, задачу или мир в целом с разных точек зрения побуждает нас учиться и расти. Мышление роста вкупе с возможностями многопланового обучения позволит учащимся любого возраста избавиться от страха, преодолеть препятствия и обрести уверенность в своих силах. Даже если мы работаем внутри жесткой фиксированной системы, не признающей многообразие подлинной ценностью, — будь то школа, ориентированная на результаты тестов, или работа, где от вас нужны только узкие специальные навыки, — использование многопланового подхода к решению возникающих проблем поддержит вас и укрепит все направления вашего обучения и все аспекты вашей жизни.

Глава 5. Почему важна гибкость, а не скорость

* * *

Ошибочные идеи, несовершенные методы преподавания и ложные установки ограничивают возможности обучения. Однако теперь мы вооружены данными научных исследований и располагаем большим выбором диаметрально противоположных и доказанных образовательных методик, которые раскрепощают процесс обучения и раскрывают потенциал человека. Выше мы обсудили два пагубных мифа: 1) возможности мозга изначально заданы и неизменны; 2) трудности в обучении свидетельствуют о слабости ученика. Отбрасывая эти ложные идеи, люди претерпевают глубокую трансформацию.

В этой главе мы рассмотрим еще один деструктивный миф — идею о том, что для успешного изучения математики или другого предмета необходимо быстро соображать, — и разберем его альтернативу. Оставляя в стороне теорию о том, что важна одна лишь скорость, и рассматривая обучение как среду для глубокого и гибкого мышления, мы начинаем по-новому воспринимать мир. Как мы обсуждали в главе 4, гибкое сознание и способность мыслить творчески присущи новаторам[115] и становятся доступными и нам, когда мы смотрим на известное под другим углом.

Ключевой навык обучения № 5

Скорость мышления не является мерой способностей.

Оптимальное обучение возможно, если подходить к теориям и к жизни в целом гибко и творчески.

Математика более, чем другие предметы, пострадала от идеи, что для достижения успеха нужна быстрая реакция. Частично это следствие порочной школьной практики, например проверки знаний на время, которую часто проводят даже с пятилетними детьми. Родители также практикуют занятия по математике с ограничением по времени, используя, к примеру, дидактические карточки. Из-за этого у многих людей математика ассоциируется со скоростью и они думают, что если не могут быстро оперировать цифрами, то им не преуспеть в этой дисциплине. Своей аудитории я показываю рабочие таблицы, подобные этой (рис. 5.1).


Рис. 5.1. Таблица умножения на 12


Часто такие задания вызывают волну недовольства, хотя некоторым (а их меньшинство) нравятся тесты. Теперь мы знаем, что у многих детей младшего возраста тесты на время формируют негативный опыт при изучении математики. Новые исследования возможностей мозга помогают понять процессы, благодаря которым это происходит.

Влияние стресса и тревоги

Нейробиолог Сиан Байлок изучала мозг людей, работавших в стрессовой обстановке. Она показала, что, когда мы нервничаем или работаем в состоянии стресса, кратковременная память[116] блокируется и мы не можем получить доступ к математическим фактам, которые нам известны[117]. Особенно подвержены риску учащиеся с хорошо развитой кратковременной памятью. Выполняя тесты на время, они испытывают тревогу, что блокирует их кратковременную память и не позволяет прорешать задания. Развивается тревога, а следом за ней запускается сценарий деструктивных установок.

Вам, вероятно, знакомо состояние стресса, затрудняющее работу мозга? Вам когда-нибудь приходилось производить математические расчеты под давлением, когда вы чувствовали, будто в голове пусто? Когда детям младшего возраста предлагают тесты на время, многие начинают нервничать, кратковременная память блокируется — и они не могут выполнить элементарные действия. Если дети понимают, что не справляются с заданием, состояние тревоги только усиливается.

Я много лет преподавала в Стэнфордском университете, и каждый год значительная часть моих студентов испытывала подобную тревогу и страх. Я всегда расспрашивала тех, кто получил подобную психологическую травму, когда и что именно с ними произошло. Почти все опрошенные отвечали одинаково: вспоминали математические тесты на время во втором или третьем классе. Они испытывали беспокойство и, в отличие от других, не справлялись с заданиями, что заставляло их думать (и это неудивительно), будто математика требует скорости и оперативности. В итоге интерес к этой дисциплине они утрачивали.

Преподаватель Джоди Кампинелли рассказала, как в детстве ее изматывала необходимость решать тесты на время, ведь делала она это с трудом. В конце второго класса девочке сообщили, что ей, возможно, придется остаться на второй год, потому что она не справилась с ними. Первая часть истории ужасает, но это еще не все. Джоди сказали, что с ней будет заниматься сам директор школы, которого она называла «мучителем». Вдобавок родители заставляли ее вечерами сидеть на кухне и решать тесты на время; рядом ставили таймер, который громко тикал, пока она лихорадочно пыталась справиться с вычислениями.