Но в мире элементарных частиц в этом отношении царила полная анархия. Мир крошечных сгустков материи долгое время обходился без симметрии. В нем властвовали только частицы. Почему? Существуют ли зеркальные отображения электронов, протонов и нейтронов? И могут ли, должны ли они существовать?
Пытаясь ответить на эти вопросы, ученые, сами того не подозревая, расшатывали прочное здание установившихся в науке принципов.
Старая поговорка «о вкусах не спорят» относится не только к гастрономическим интересам, к области искусства или вопросам моды. Она с равным успехом управляет трудами ученых. Многие исследователи считают целью своей жизни открытие новых фактов. Их беспокоят главным образом два вопроса: как и что. Они спрашивают, например, как устроен атом, и, установив, что вокруг положительно заряженного атомного ядра вращаются электроны, считают свою задачу выполненной. В дальнейшем «как» и «что» заставляют их поинтересоваться тем, что входит в состав атомного ядра и как удерживаются в нем его составные части.
Но есть и другой тип ученых. Для них главным является вопрос «почему», и они не могут успокоиться, не выяснив, в силу каких причин атомное ядро всегда положительно, а электрон имеет отрицательный заряд. История науки свидетельствует, что попытки ответить на вопрос «почему» часто приводят к радикальной ломке установившихся взглядов, к настоящей революции идей. Это и случилось на подступах к антимиру.
Один из создателей квантовой механики, Дирак, пытался объединить ее с теорией относительности. Разработав теорию электрона, он пришел к абсурдному выводу о том, что электрон может иметь отрицательную энергию, то есть что он в некоторых случаях должен двигаться навстречу действующей на него силе.
Для того чтобы не вступать в противоречие с законом сохранения энергии, Дираку пришлось ввести в теорию новую элементарную частицу, по всем свойствам совпадающую с электроном, но имеющую положительный заряд.
В течение нескольких лет новая частица, родившаяся из уравнений, тревожила умы физиков и вызывала жаркие споры. Действительно, почему электрон имеет отрицательный заряд? Почему не может существовать положительный электрон-позитрон?
И наконец, в 1932 году Андерсон, изучая следы космических частиц на фотопластинках, увидел на одной из них два следа. Эти следы выходили из одной точки и были совершенно одинаковы, за исключением того, что один изгибался по направлению движения часовой стрелки, а другой в противоположном направлении. Один из следов, несомненно, принадлежал электрону. А другой? Другой мог быть только следом позитрона. Так впервые был обнаружен факт рождения частицы и античастицы — электрона и позитрона.
Это был потрясающий факт. До тех пор элементарные частицы считались вечными, а число их в мире неизменным. Теперь же оказалось, что элементарные частицы могут рождаться и умирать. Их рождение и гибель подчиняются строгим законам. При подходящих условиях квант света может превратиться в пару электрон — позитрон, а пара этих частиц может исчезнуть, превратившись в квант света.
Дальнейшее развитие физики заставило ввести в теорию новые античастицы, например антипротон, — частицу, совершенно аналогичную протону, но имеющую отрицательный заряд. Через несколько лет и эта частица была найдена при помощи мощного ускорителя. Вслед за этим для уточнения теории понадобилась новая частица — антинейтрон, частица нейтральная, отличающаяся от нейтрона противоположными магнитными свойствами.
Бурное развитие физики привело к открытию еще целого ряда новых античастиц, и, наконец, был обнаружен общий закон, определяющий существование античастиц.
Казалось, все пришло в порядок. Для каждой частицы, если этого требовала теория, была найдена соответствующая античастица. Но каждый ответ порождает новый вопрос: почему же известные нам тела состоят из обычных частиц, почему мы не встречаем антиатомов, состоящих из антипротонов, антинейтронов и позитронов? Если реально существует вещество и антивещество, то почему же вокруг нас мы всегда находим только вещество? Естественно, возникает недоумение, почему все в нашей Галактике — и звезды и межзвездное вещество — состоит только из частиц?
Где же антивещество, где антимир?
И хотя современная физика считает, что частицы и античастицы совершенно равноправны, ответа на этот вопрос она пока не дает.
Здесь ученые заходят в тупик. Существование антивещества очевидно, но что же можно сказать об антимире? Может быть, антимир находится где-то за пределами видимости и он отличается от нашего мира тем же, чем отличается изображение человека в зеркале от него самого? Существует ли на самом деле потрясающий воображение сказочный «мир наоборот», мир, состоящий из антиводорода и других антиэлементов? Есть ли где-нибудь удивительные антигорода, в которых милиционеры не штрафуют за левое движение транспорта, но не потому, что там, как в Англии, принято такое направление движения, а потому, что жители антимира считают правым то, что у нас считается левым?
Так ли все это — проверить пока невозможно.
Известно лишь, что при встрече частицы и античастицы обе они исчезают, превращаясь в другой вид материи. Поэтому-то в нашем мире, насыщенном обычными частицами, античастицы не могут жить долго.
Как это происходит, ученые поняли. Но почему?
Вопрос, почему наш мир не симметричен, почему вещество в нем преобладает над антивеществом, до сих пор остается открытым. До сих пор никто из ученых так и не знает, почему имеется такое несоответствие в количестве материи и антиматерии в нашей вселенной…
Когда-то французский ученый Блез Паскаль то ли в шутку, то ли всерьез заметил: «Будь нос Клеопатры короче, переменился бы весь облик Земли».
Чепуха, не правда ли? Значит, будь у Клеопатры или иной красавицы нос других габаритов, Ньютон не создал бы теории тяготения, а Эйнштейн — теории относительности, на Земле могли прекратиться приливы и отливы, а Солнце перестало бы светить? Глупости, конечно…
Однако, если понимать высказывание Паскаля не столь буквально, не так уж прямолинейно, в нем можно обнаружить здравый смысл. В мире действительно ничто не проходит бесследно. Все, что ни случается, так или иначе влияет на окружающее, оставляет большой или малый, заметный или не сразу приметный след. Все, что ни случается в природе, способно изменить лицо Земли и всего мира.
Не удивительно, что нас не перестает занимать вопрос: какая причина сделала мир таким, каким мы видим его сегодня?
Почему вокруг нас находится лишь вещество в виде частиц и никто не видел ни звезд, ни галактик из античастиц?
Существует мнение, сваливающее вину на случай. Не зная других путей решения проблемы антивещества, многие ученые считают, что случайно в течение развития мира в нашей области вселенной скопилось больше частиц, чем античастиц. Так же случайно, как случайно людей с левым сердцем больше, чем с правым. Но можно допустить, что где-то на других планетах живут в основном обладатели правых сердец.
Защитникам его величества случая только и оставалось предположить, что где-то в другом месте вселенной так же случайно образовался антимир с преобладанием античастиц. А в среднем в силу симметрии число частиц и античастиц, количество вещества и антивещества по всей вселенной одинаково.
Эта точка зрения мирила многих ученых. Но, увы, она встречает по крайней мере две большие трудности, которые и не давали ученым успокоиться и удовлетвориться этим объяснением. Одна из них напоминает, что до сих пор все же никому не удавалось наблюдать во всей видимой области вселенной ни одной антигалактики. В составе космических частиц, прилетающих на Землю из глубин вселенной, тоже не обнаружены античастицы. Если бы в нашем мире, состоящем из вещества, появилась кучка антивещества, оно тотчас бы испарилось, как говорят ученые, аннигилировало. То есть, вступив в реакцию с веществом, оно тотчас бы исчезло, как превращаются при сложении в нуль одинаковые количества положительных и отрицательных единиц. Но исчезло бы самым заметным образом. Если бы на космических дорогах встретились мир и антимир, они бы вступили в реакцию и их встреча сопровождалась взрывом, который не могли бы не заметить ученые.
Зная это, исследователи с большим вниманием наблюдали за особенно яркими небесными объектами, яркими в световых или радиолучах. И вот однажды — это было в начале пятидесятых годов — астрономы нашли исключительно мощный источник радиоволн. Он находился в созвездии Лебедя. Причем в сильные телескопы были видны два особенно ярких пятна. Возникло предположение, что это две столкнувшиеся лоб в лоб галактики. Столкновение их и вызвало всплеск мощного радиоизлучения. Но нашлись несогласные, которые ухватились за этот пример, иллюстрирующий, по их мнению, столкновение не просто двух галактик, но галактики и антигалактики! Единственно аргументированным возражением оказалось то, что этот объект излучает лишь мощные радиоволны, тогда как оптическое излучение от него очень слабо. Если бы было справедливо мнение о столкновении двух антимиров, излучение было бы мощно по всему частотному спектру.
Итак, первая трудность осталась неразрешенной. И все же прямого опровержения идеи антимира из нее не вытекало.
Вторая трудность заключалась в следующем. Вычисления показали, что средняя плотность вещества в мировом пространстве крайне невелика. Звезды во вселенной так редки, что, по словам одного ученого, «оставьте живыми только трех пчел во всей Европе, и воздух Европы будет все-таки больше наполнен пчелами, чем пространство звездами». А межзвездный водород, планеты, метеоры, пыль — все это вместе имеет такую ничтожную плотность, что добавляет к этой «пустоте» очень немного.
Усреднив всю массу известного вещества по пространству, ученые получили весьма малую величину. Но весь опыт физики показывает, что большие отклонения от среднего в природе маловероятны. Так как же могло случиться, что на фоне почти полной пустоты, на фоне ничтожной плотности материи в мировом пространстве вдруг возникли огромные всплески и вещество смогло собраться в такие мощные сгустки, как звезды?