Сорбционные барьеры (G) возникают в тех местах биосферы, где воды соприкасаются с сорбентами — веществами, способными поглощать (сорбировать) из растворов растворенные газы, ионы и молекулы.
Геохимическое значение сорбции очень велико, так как в результате этих процессов химические элементы извлекаются из «недосыщенных вод», из которых не могут образоваться самостоятельные минералы данных элементов. Для некоторых редких элементов сорбция — почти единственный и самый важный механизм концентрации в биосфере. Например, редкий металл рубидий никогда не насыщает природные воды, и науке неизвестны собственные минералы рубидия. Но глины могут поглощать рубидий из вод, и в результате за геологическое время в глинах хотя и в слабой степени, но все же концентрируется этот металл. Сорбция глинами играет важную роль и в истории другого редкого щелочного металла, соседа рубидия по периодической системе, — цезия.
Помимо почв сорбционные барьеры очень характерны для глинистых илов океанов, морей, озер, для торфяных болот, водоносных горизонтов (на их контакте с водоупорными породами).
Нередко на одном и том же участке биосферы формируются барьеры различных типов, например сорбционный и кислородный. Мы уже рассказали о кислородном барьере, который был изучен в Бурятии. На нем из глеевых вод осаждались гидроокислы железа. Это аномалия А6. Но гидроокислы железа — хорошие сорбенты для мышьяка, ванадия и других элементов. Поэтому здесь же образуется и сорбционный барьер, аномалия G6. В целом на таких участках формируются совмещенные геохимические барьеры — кислородно-сорбционные и совмещенные аномалии А6—G6.
На участках окисляющихся сульфидных руд с характерными для них сернокислыми водами формируются сорбционные аномалии типа G1 с концентрациями меди, цинка, серебра и других металлов. Здесь в глинах иногда накапливается до 1% меди (по современным кондициям это медные руды), но каких-либо медных минералов обнаружить не удается. Аномалии G2 особенно характерны для таежных ландшафтов и влажных тропиков с их кислыми водами, a G3 и G4 — преимущественно для степей и пустынь. На дне морей и океанов преобладают G3, но встречаются и G11 (например, в глубоких зонах Черного моря, где вода заражена сероводородом). В илах содовых озер развиты аномалии G4. Понятно, что для каждого вида аномалии характерна сорбция определенной группы химических элементов, их парагенная ассоциация.
В последние годы обнаружена чрезвычайно интересная разновидность сорбционного барьера в рыхлых отложениях, перекрывающих рудные месторождения. Поиски таких «перекрытых руд» теперь приобретают особую важность, так как большинство месторождений, выходящих на поверхность, уже обнаружено. Вместе с тем под лёссом, морскими и речными глинами и другими осадочными породами на вполне доступной глубине залегает еще немало руд. Однако видимых признаков на земной поверхности такие месторождения не имеют.
Советские геохимики С. П. Албул, Л. В. Антропова, Г. Ф. Ларионов, Ю. Е. Сает и др. доказали, что во многих рудных провинциях СССР в почвах над перекрытыми месторождениями существуют геохимические аномалии меди, свинца, никеля и других рудных элементов. Эти аномалии обнаруживаются только с помощью различных вытяжек (уксуснокислых, содовых и др.), и интенсивность их очень мала. Все же они отчетливо выделяются, и, следовательно, рудное тело посылает нам сигнал о своем существовании через десятки метров перекрывающих глин. Аномалии, несомненно, имеют сорбционную природу, они чаще всего относятся к типу G3. Как они образовались, пока остается загадкой. Можно только предполагать, что от рудного тела медленно, в течение целых геологических периодов осуществляется миграция рудных элементов к земной поверхности вместе с поровыми растворами или же диффузионным путем. Однако непонимание природы явления не исключает возможности его практического использования (природа электричества тоже была понята позже изобретения динамо-машины). Сейчас в практику внедряется новый метод геохимических поисков перекрытых месторождений на основе определения рудных элементов в вытяжках из почв и глин.
Термодинамические барьеры (Н) — так автором названы участки концентрации химических элементов в местах резкого изменения температуры или давления. Наиболее изучены явления понижения давления в водах, богатых углекислым газом и ионом HCO3-.
Углекислые подземные воды широко распространены не только в биосфере, но и в земной коре в целом; часто они имеют высокую температуру, в них легко растворяются многие металлы, образующие бикарбонаты (известные только в растворе): Ca(HCO3)2, Fe(HCO3)2, Pb(HCO3)2 и т. д. Точнее, надо сказать, что в воде находятся ионы металлов и HCO3-, например: Са2+ + HCO3-и т. д. При выходе таких вод на поверхность давление CO2 понижается, бикарбонаты переходят в труднорастворимые карбонаты. В результате на этом термодинамическом барьере происходит осаждение карбонатов:
Так образуются многие концентрации известковых туфов (травертинов). Например, к югу от Ленинграда расположено плато, сложенное известняками. Подземные воды в известняках насыщены бикарбонатом кальция, а в местах их выхода на поверхность отлагаются известковые туфы. Аналогичные явления известны во многих районах. Это преимущественно аномалии типа Н3 и Н7.
Местами на H-барьере накапливаются грандиозные массы известняков. Всем, посещавшим Пятигорск, хорошо известна Горячая гора, на склонах которой и в наши дни выходят горячие углекислые сероводородные источники. Известняки, слагающие Горячую гору, отложились за геологическое время на термодинамическом барьере. Это тип H11.
Интересный пример аномалии, сформировавшейся на термодинамическом барьере (Н3), изучила Л. Д. Кудерина на полиметаллическом месторождении Жайрем в Центральном Казахстане. Рудные тела здесь приурочены к палеозойским отложениям и перекрыты толщей кайнозойских глин и песков. Глины разбиты разломами, в которых наблюдаются повышенные концентрации свинца и марганца. Кудерина предположила, что при образовании разломов по ним поднимались гидрокарбонатные воды, содержащие РЬ(HCO3)2 и Mn(HCO3)2. Высокое содержание CO2 в водах связано с окислением сульфидных руд на глубине и взаимодействием образующейся H2SO4 с вмещающими известняками: CaCO3 + H2SO4 → CaSO4 + H2O + CO2. В приповерхностной части разломов давление углекислого газа понижалось, карбонатное равновесие нарушалось, что и приводило к осаждению на термодинамическом барьере свинца и марганца (повышенное содержание марганца характерно для руд).
Техногенные геохимические барьеры. Барьеры возникают не только в ходе природных процессов, но и в результате хозяйственной деятельности человека. Например, при вскрытии угольных пластов шахтами нередко образуются сернокислые воды, так как многие угли содержат пирит. Этот «кислый водоотлив» шахт является важной технической проблемой, так как кислые воды разрушают металлические предметы в шахтах; поступая в реки, они губят рыбу. Но если на пути миграции шахтных вод поместить карбонатные породы, то на этом техногенном щелочном геохимическом барьере будут задержаны вредные соединения кислой природы, образуется искусственная геохимическая аномалия тина Д2.
Многие металлургические и химические комбинаты, тепловые электростанции также имеют вредные отходы, которые могут быть задержаны на техногенных барьерах.
Таким образом, техногенные барьеры должны помочь борьбе с загрязнением окружающей среды. Их необходимо создавать вокруг промышленных предприятий, особенно с вредными выбросами, и таким путем локализовать загрязнение, не дать ему распространиться на значительную площадь.
Техногенные геохимические барьеры можно использовать и для создания искусственных месторождений полезных ископаемых. Человечество в этом отношении имеет некоторый опыт, так как уже в древности с помощью дамб отгораживали небольшие участки моря, где происходило усиленное испарение морской воды и осаждение поваренной соли. Вероятно, следует рассмотреть возможность образования искусственных месторождений полезных ископаемых и на других техногенных барьерах.
Науки, изучающие отдельные биокосные системы, возникли в разное время, нередко независимо друг от друга, на основе различной конкретной методологии. Вместе с тем объекты исследования всех этих наук относятся к одной группе природных явлений. Отсюда следует вывод о перспективности общего учения о биокосных системах, основы которого были заложены в трудах В. В. Докучаева, В. И. Вернадского, Б. Б. Полынова.
Автор стремился обобщить представления о биокосных системах, хорошо сознавая, что это только начало. Потребности практики, и в первую очередь решения проблем защиты окружающей среды, требуют дальнейшего развития учения о биокосных системах. Если это направление научной мысли заинтересует читателя и книга послужит толчком для новых исследований, то автор будет считать свою задачу выполненной.
Литература
Алекин О. А. Основы гидрохимии. Л., Гидрометеоиздат, 1970.
Анисимов Л. А. Закономерности распространения сероводорода в осадочной толще. — «Советская геология», 1970, № 3.
Арманд А. Д. Модели и информация в физической географии. М., «Знание», 1971.
Арманд Д. Л. Наука о ландшафте. М., «Мысль», 1976.
Базилевич Н. И. и Родин Л. Е. Географические закономерности продуктивности и круговорота химических элементов в основных типах растительности Земли. — В кн.: Общие теоретические проблемы биологической продуктивности. Л., «Наука», 1969.