Биология для тех, кто хочет понять и простить самку богомола — страница 17 из 42

Рибосомные РНК составляют 80–85 % от общего содержания РНК в клетке. В комплексе с рибосомными белками они образуют органоиды-рибосомы, осуществляющие синтез белка.

Рибозим (от «рибонуклеиновая кислота» и «энзим»[40]) представляет собой РНК, обладающую ферментативным действием. Рибозимы «разрезают» другие молекулы РНК или, напротив, «сшивают» их фрагменты.

Рибозимы применяются в медицине для борьбы с вирусами. Они разрезают вирусную РНК, лишая тем самым вирусы способности к воспроизводству.

Из правила «один ген кодирует один белок, который определяет один признак» есть два исключения. И если первое можно понять, то второе выходит за рамки допустимого.

Но давайте начнем с понятного, так как-то спокойнее.

Некоторые гены обладают множественным действием – они способны влиять не на один, а на несколько признаков. Такая «многогранность» называется плейотропией, что переводится с греческого как «бо́льшее количество превращений».

Плейотропия может быть первичной или вторичной. При первичной плейотропии один ген на самом деле влияет на несколько признаков. Например, у человека ген, определяющий рыжую окраску волос, одновременно обуславливает более светлую окраску кожи и наличие на ней веснушек. При вторичной плейотропии ген по сути дела влияет на один признак, от которого напрямую зависит несколько других признаков. Классическим примером вторичной плейотропии является нарушение синтеза белка крови гемоглобина, приводящее к развитию заболевания, называемого серповидноклеточной анемией. Ген вызывает нарушение синтеза белка, а дальше «нарушенный» гемоглобин приводит к вторичным проявлениям – невосприимчивости к малярии, анемии, увеличению печени и селезенки, поражению сердца и головного мозга.

Но как же быть с концепцией: «один ген – один белок – один признак»? Получается, что плейотропия ей противоречит…

Нет, не противоречит. Просто один белок, образующийся в результате считывания информации с гена, может принимать участие в нескольких процессах, происходящих в организме. Давайте скажем так: «один ген – один белок» и эта концепция будет верной для любого гена.

А будет ли?

Приготовьтесь, сейчас начнется самое интересное. Мы переходим ко второму исключению.

Как, по-вашему, можно объяснить вот такой «парадокс» – мы с вами имеем около двадцати тысяч генов, но при этом в нашем организме синтезируется более ста тысяч белков?

Двадцать тысяч генов и сто тысяч белков! По пять белков на один ген!

По пять разных белков с одного и того же кода?

Как такое вообще возможно?

Это все равно, что отлить пять разных фигур, используя одну и ту же форму для литья, или же построить несколько разных зданий по одному и тому же проекту.

Можно понять, что один белок участвует в различных процессах в организме и, соответственно, влияет на несколько признаков.

Но как может быть нарушено правило «один ген – один белок»?

Такое даже представить не получается. Ген – это код, определенная последовательность четырех видов азотистых оснований. Код задает аминокислотную последовательность (состав и структуру) белковой молекулы. Как можно по одному и тому же коду «построить» две разные белковые молекулы? Или не две, а пять!

Такого просто не может быть!

Один код – одно вещество.

Но при этом двадцать тысяч генов отвечают за синтез более ста тысяч белков.

Где логика?

Логика в явлении, которое называется альтернативным сплайсингом.

Звучное название, интересный, можно сказать – уникальный процесс.

Сплайсинг представляет собой процесс вырезания определенных нуклеотидных последовательностей (проще говоря – сегментов) из молекулы РНК в ходе процесса ее созревания. Да, не удивляйтесь, РНК, особенно матричные, «созревают» подобно винограду или яблокам.

На самом деле про виноград и яблоки мы вспомнили просто так, для красного словца. Ничего общего с созреванием плодов и ягод созревание РНК не имеет и заключается оно в том, что из молекул РНК удаляются (вырезаются) лишние, ненужные участки, не отвечающие за синтез белка. Эти лишние участки образуются в ходе синтеза молекулы РНК как вспомогательные. Для синтеза РНК они нужны, а для функционирования – нет.

Вообще-то, правильнее было бы назвать этот процесс не «созреванием», а «избавлением от балласта». Но уж как назвали, так и прилепилось. Не в названии суть, а в том, что иногда после вырезания балласта разрезанная молекула РНК может быть «сшита» с пропуском какого-либо нужного, активного фрагмента. Такие «ошибки» приводят к тому, что на матрице «сшитой» РНК синтезируется другой белок, не такой, для синтеза которого матрица изначально предназначалась.

Один ген – один код – разные белки.

Спасибо альтернативному сплайсингу!

Но ген-то ни в чем не виноват. Он честно служит основой для синтеза той РНК, на которую его запрограммировала природа и не стремится нарушать. А что уж там с РНК происходит в процессе созревания – не генное дело. Но в результате мы имеем то, что имеем – пятикратное превышение количества синтезируемых в организме белков над количеством имеющихся генов.

И при этом правило «один ген – один белок» по сути не нарушается! Первоначальная «несозревшая» матрица РНК никаких отклонений от заданного кодом стандарта не имеет.

Нет, вы оцените красоту этой генетической игры!

И не спешите пугаться – что, мол, за беспредел творится в наших организмах? Вместо правильных белков образуется черт знает что!

На самом деле никакого беспредела в сплайсинге не существует. Все находится под неусыпным наблюдением системы белков, называемых факторами сплайсинга. Эти факторы контролируют образование альтернативно сплайсированных РНК-матриц. «Ошибки» сплайсинга на деле таковыми не являются, поскольку они заранее запрограммированы и позволяют синтезировать несколько белков на основе одного генетического кода. Несколько нужных организму белков, а не каких попало, обратите особое внимание на это обстоятельство.

Допустим, что вы инженер-строитель и застраиваете целую улицу однотипными домами по одному-единственному проекту. Но всякий раз перед началом строительства ваши помощники вносят в проект определенные изменения, благодаря которым дома получаются не однотипными, а индивидуальными. Вы контролируете своих помощников и приступаете к строительству только после того, как убедитесь, что изменения не повредят делу. То есть – ваш сплайсинг безопасен и полезен, потому что в результате улица получается не уныло-однотипной, а красивой. Это же совсем не то, если нерадивые строители сделают что-то не по технологии и в результате постройка обрушится.

А знаете ли вы, что в нашем организме существует так называемая «мусорная ДНК»? Так называют участки молекул ДНК, не выполняющие никакой функции, то есть – не хранящие никакой информации о синтезе белков. С учетом того, что к «мусору» относится более 90 % молекулы ДНК, можно предположить, что нам просто не известны функции этих участков, ведь у природы ничего лишнего и ненужного не бывает. У нее все продумано до мельчайших деталей и ради нескольких «работающих» процентов не будут синтезироваться гигантские молекулы ДНК. По мере развития генетики, количество «мусорной» ДНК будет сокращаться, а количество полезной – расти.

Гены могут иметь различные специальности…

Нет, это не ошибка – действительно могут. По выполняемым функциям все гены подразделяются на структурные и функциональные (проще говоря – на работяг и начальников).

Простые работяги – структурные гены, содержат информацию о белках и РНК и добросовестно передают эту информацию по назначению. Функциональные гены руководят структурными генами, регулируют их работу. В зависимости от вида регуляции, функциональные гены подразделяются на модуляторы (ингибиторы и интенсификаторы), регуляторы и операторы.

Гены-модуляторы усиливают или ослабляют действие структурных генов. Ингибиторы – ослабляют, а интенсификаторы – усиливают.

Ген-оператор «включает» и «выключает» структурные гены для считывания с них информации. Гены, да будет вам известно, включаются при необходимости, а не работают постоянно.

Ген-регулятор руководит работой гена-оператора. Он содержит информацию, на основе которой синтезируется особый белок-репрессор, блокирующий ген-оператор.

Задумывались ли вы когда-нибудь о том, как именно происходит блокировка или нейтрализация действия химических веществ в живых организмах? Путем связывания молекул белков с их молекулами. Можно сказать, что белковая молекула обхватывает молекулу блокируемого вещества «руками и ногами» и, таким образом, не дает ему выполнять свои функции.

В общих чертах транскрипция происходит так.

Ген-оператор объединяет несколько структурных генов в своеобразную «бригаду», которая работает на «стройплощадке» – участке молекулы ДНК, называемом опероном. Ген-оператор выступает в роли бригадира, который руководит рабочими и периодически покрикивает: «Давай-давай, шевелись быстрей!». Бригаде генов помогает в работе высококвалифицированный мастер – фермент РНК-полимераза, запускающий процесс синтеза РНК. Главным же руководителем строительных работ (прорабом) является ген-регулятор, который решает, когда и сколько бригаде-оперону следует работать. Если нужно остановить работу на опероне, ген-регулятор отправляет к гену-оператору посыльного – белок-репрессор. «Шабаш! – командует этот белок гену-оператору. – Хватит работать! Давай расслабляться!». А для возобновления работы ген-регулятор отправляет к оперону другой белок – индуктор, который уводит прочь белок-репрессор. Освободившийся от навязчивого гостя белок-оператор командует своей бригаде: «Начинаем работу!»…

Вот так плавно, сами того не заметив, мы с вами перешли к выработке белков, которая является частью обмена веществ в живых организмах. Но обмен – это отдельная и очень глубокая тема, которая заслуживает отдельной главы.

Глава седьмая. Обмен веществ и энергии