... В лучах огневицы развил он свой мир,
Земля зеленела, светился эфир.
Ф. Тютчев. 1831
Биосфера - земная оболочка
§ 68. Значение живого в строении земной коры медленно вошло в сознание ученых и еще до сих пор обычно не оценивается во всем его объеме.
Только в 1875 г. один из крупнейших геологов прошлого века, профессор Венского университета Э. Зюсс, ввел в науку представление о биосфере как об особой оболочке земной коры, охваченной жизнью. Он закончил этим медленно проникавшее в научное сознание представление о всюдности жизни и непрерывности ее проявления на земной поверхности.
Введя новое понятие об особой земной оболочке, которая обусловлена жизнью, Э. Зюсс высказал в действительности новое очень большое эмпирическое обобщение, всех последствий которого он не предвидел. Это обобщение только теперь начинает выясняться благодаря новым научным достижениям, в его время неизвестным.
§ 69. Биосфера составляет верхнюю оболочку, или геосферу, одной из больших концентрических областей нашей планеты — земной коры.
Физические и химические свойства нашей планеты меняются закономерно в зависимости от их удаленности от центра. В концентрических отрезках они идентичны, что может быть установлено исследованием.
Можно различить две формы в этой структуре: с одной стороны, большие концентрические области планеты — концентры, с другой — более дробные подразделения, называемые земными оболочками, или геосферами[12].
По-видимому, вещество этих областей отделено друг от друга и если переходит из одной области в другую, то этот переход совершается чрезвычайно медленно или временами и не является фактом ее текущей истории.
Каждая область представляет, по-видимому, замкнутую, не зависимую от другой механическую систему.
Земля сотни миллионов лет, если не миллиарды, находится, в общем, в одних и тех же термодинамических условиях. Неизбежно думать, что в ней за это время установились устойчивые, неизменные равновесия вещества и энергии там, где не было внешнего (для механических систем ее составляющих) притока действенной энергии.
Надо думать, что в замкнутых областях Земли мы имеем механические системы тем более совершенного равновесия, чем меньше к ним приток сторонней энергии.
Таких областей по крайней мере три: 1) ядро планеты; 2) промежуточный слой, называемый иногда "сима" (по Зюссу), и 3) земная кора.
§ 70. Ядро земного шара имеет совершенно иной химический состав, чем та земная кора, в которой мы находимся. Возможно, что вещество ядра находится в особом газообразном состоянии (закритического газа), но наши представления о физическом состоянии вещества глубоких частей планеты, находящихся под давлением во многие десятки, если не сотни, тысяч атмосфер, очень гадательны. Допустимо нахождение тяжелых элементов или их простых соединений в ядре планеты и в твердом или вязком состоянии, и в газообразном; мыслима для них и высокая температура — в тысячи градусов, и низкая температура, близкая к температуре космического пространства. Обычно законность этого последнего допущения оставляется без внимания, вследствие чего оценка пределов нашего незнания искажается.
Иной и необычный для земной коры химический состав ядра следует из большого удельного веса планеты (5,7) по сравнению с удельным весом верхних оболочек земной коры (2,7). Ядро не может иметь удельный вес меньше 8, а может быть даже 10 и больше[13]. Думают, — и это возможно, — что оно состоит из металлического железа и его металлических соединений.
Несомненно, что на глубине около 2900 км от уровня океана наблюдается сильное изменение в механических свойствах вещества планеты. Этот факт, прочно установленный изучением землетрясений, кажется, не подлежит сомнению.
Такое изменение свойств вещества часто объясняют гипотезой, что сейсмические волны на такой глубине входят в другую область. Эта глубина отвечала бы тогда поверхности металлического ядра.
Однако возможно предположить для этой границы и менее значительные глубины — 1200 или 1600 км, соответствующие другим скачкам, наблюдающимся в ходе сейсмических волн.
§ 71[14]. Новые данные в этой области будут получены гораздо скорее, чем это еще недавно считали возможным. Если сравнить результаты петрогенных исследований с результатами сейсмических наблюдений, то можно заметить, что породы, содержащие силикаты и алюмосиликаты, занимают значительно большее место в структуре планеты, чем это думали раньше. Главным образом это видно из замечательных наблюдений хорватских ученых — А. и С. Мохоровичичей, отца и сына. Они в последнее время привлекали внимание к этому факту, и их работы являются несомненным достижением в сравнении с изысканиями их предшественников.
§ 72. Теперь можно определить некоторые существенные особенности второй концентрической области Земли, названной Э. Зюссом симой, которая, как ему казалось, характеризуется преобладанием атомов Si, Mg и О.
Эта область прежде всего отличается своей мощностью; она занимает многие сотни километров, может быть превышает тысячу километров. Затем для этой области характерно, что в ней пять химических элементов — кремний, магний, кислород, железо и алюминий — играют очень важную роль. Увеличение количества более тяжелого элемента — железа, — по-видимому, связано с глубиной.
Возможно, что породы, аналогичные основным породам земной коры, третьей области, также играют большую роль в строении области симы. Механические свойства этих пород напоминают эклогиты, по мнению некоторых ученых — геологов и геофизиков.
§ 73. Верхнюю границу области симы представляет земная кора, средняя мощность которой — немного меньше 60 км — довольно точно установлена разными наблюдениями, не зависимыми одни от других: с одной стороны, путем изучения землетрясений, с другой стороны, путем измерения силы тяжести.
Изостатическая поверхность отделяет область симы от земной коры. Она показывает замечательную особенность области симы, в корне отличающую ее от области земной коры. Материя симы во всех концентрических слоях, которые в ней различаются, является гомогенной.
Физические и химические свойства симы концентрически меняются в зависимости от расстояния изучаемых точек от центра планеты. Что касается материи земной коры, то она в пределах одного и того же концентрического слоя на одинаковом расстоянии от центра планеты является различной.
При этих условиях не может быть сколько-нибудь значительного обмена между веществом симы и веществом земной коры.
§ 74. Эти данные заставляют нас, прежде всего, оставить в стороне всякого рода представления о симе как об области планеты, богатой свободной энергией.
Энергия ее по отношению к изучаемым нами явлениям может быть только потенциальной, проявление которой никогда не достигало и не достигает земной поверхности. Оно не достигало ее в течение всего геологического времени — сотен миллионов лет. Мы можем принимать это положение как эмпирическое обобщение, подтверждаемое всей логической силой геологических наблюдений.
Другими словами, нет никаких данных, которые указывали бы, что сима не находится в состоянии химической индифферентности, полного и неизменного в течение всего геологического времени устойчивого равновесия. На возможность такого ее и ядра состояния указывает, во-первых, то, что мы не знаем в изученных слоях земной коры ни одного научно установленного случая притока вещества из глубоких частей планеты, лежащих за пределами земной коры, и, во-вторых, то, что нет ни одного на ней явления, в котором бы проявлялась предполагаемая в симе свободная энергия, например возможная ее высокая температура. Проникающая из глубин на земную поверхность свободная энергия — теплота — связана "не с симой, а с атомной энергией радиоактивных химических элементов, по-видимому, сосредоточенных главным образом в земной коре, в верхних слоях планеты, в условиях, позволяющих проявление их энергии в форме, способной производить работу.
§ 75. Среди тех явлений, какие мы наблюдаем на земной поверхности, распределение силы тяготения дает нам возможность проникнуть внутрь планеты глубже, чем все другие, за исключением землетрясений.
Основным для него фактом является то, что оно связано с очень своеобразным и определенным строением верхней части нашей планеты. Распределение тяжести указывает на то, что большие участки коры разного удельного веса (от 1 для воды до 3, 3 для основных пород) все сосредоточены только в верхней части планеты; они размещаются на ней так, что в вертикальном разрезе легкие участки компенсируются более тяжелыми и на некоторой глубине — на изостатической поверхности — устанавливается полное равновесие; ниже ее слои планеты оказываются на всем протяжении каждого слоя одного и того же удельного веса.
Логическим выводом отсюда является то, что ниже изостатической поверхности отсутствует возможность механических нарушений и химических различий в слоях одинаковой глубины: должно существовать полное равновесие вещества и энергии.
Изостатическую поверхность ввиду этого удобно принять за нижнюю границу земной коры и за верхнюю границу симы. Она определяет очень важное свойство планеты: отделяет область изменении от области неизменных устойчивых равновесий.
Мы видели в первом очерке, что лик планеты — биосфера, верхняя оболочка этой области изменений, получает энергию, вызывающую в ней изменения, из космической среды, от Солнца. Мы знаем и еще увидим, что в ней есть приспособления, которые передают эту действенную солнечную энергию в глубь биосферы.
Но в земной коре есть и другой источник свободной энергии — радиоактивная материя, производящая еще более мощные нарушения ее устойчивых равновесий.
Достигают ли радиоактивные атомы симы, мы не знаем, но кажется несомненным, что количество радиоактивных веществ не может быть в ней того же порядка, как в земной коре, так как иначе тепловые свойства планеты были бы совершенно иными; по-видимому, радиоактивные вещества — источники свободной энергии нашей планеты — не идут в симу или быстро в ней сходят на нет.
§ 76. Наши представления о физическом состоянии области симы очень неполны.
Температура этой области, по-видимому, не очень высока, и необычайное состояние, присущее ее материи, вызвано в первую очередь действием большого давления. Механические особенности этой материи, идущей до глубины по меньшей мере 2000 км, резко отличны от всех привычных нам состояний, но во многом аналогичны твердому состоянию (С. Мохоровичич, 1921). Давление на этих глубинах так велико, что оно превосходит наше воображение и разбивает наши построенные на опытных данных представления о трех состояниях вещества: твердом, жидком и газообразном. Уже у верхней границы симы, где давление достигает 20 тыс. атмосфер, перестает существовать какое бы то ни было различие между твердым, жидким и газообразным состоянием в их обычных характерных параметрах, как это следует из опытов П. В. Бриджмэна (P. W. Bridgman, 1925).
Конечно, такая материя не может иметь кристаллическое строение. Возможно, что она имеет стекловатую структуру или структуру металла под большим давлением; это наиболее удовлетворительные представления, которые могут быть о ней даны.
Слои этой области вполне однородны, гомогенны, и по мере увеличения давления они с глубиной все больше изменяются.
§ 77. Глубина изостатической поверхности точно неизвестна. Вначале ей придавали глубину в 110-120 км. Более новые исчисления дают меньшие цифры, в 60 и 90 км.
По-видимому, уровень ее в разных местах весьма различен, и форма ее неизменно медленно меняется под влиянием источников свободной энергии, находящихся в земной коре, того, что мы называем геологическими изменениями.
Выше изостатической поверхности лежит та область планеты, которая была названа земной корой в связи с давними в геологии гипотезами, указывающими, что на геологически изучаемой земной поверхности мы сталкиваемся со следами и остатками коры застывания когда-то жидкой планеты. Это было связано с научными космогоническими гипотезами о прошлом Земли, наиболее глубоким выражением которых явилась гипотеза П. Лапласа, получившая широкое распространение в ученой среде, одно время переоценившей ее научную ценность. Однако мало-помалу выяснилось, что нигде в доступных нам слоях мы не встречаем следов такой первичной коры застывания, что геологически нигде не сказывается гипотетическое огненно-жидкое прошлое нашей планеты. Гипотезы о первичном огненно-жидком состоянии планеты таким образом исчезли. Но исторически вошедший в науку термин "земная кора" сохранился, получив иной смысл.
§ 78. В этой земной коре мы различаем ряд оболочек, концентрически в ней распределенных, хотя поверхности их разграничения в общем не являются шаровыми.
Каждая концентрическая оболочка характеризуется своими, в значительной мере независимыми и замкнутыми системами динамических равновесий - физическими и химическими. Разграничение отдельных оболочек иногда затруднительно, по-видимому, в связи с крупными пробелами наших знаний.
Более точно можем мы это делать для верхних частей твердой фазы планеты и для нижних газообразных. На глубину в 16-20 км от земной поверхности, на высоту в 10-20 км от нее к нам доходят или доходили химические соединения. Изучение геологического строения Земли свидетельствует о том, что не дальше указанных глубин образовались самые глубокие нам известные массивные породы. Мощность в 16 км отвечает толще осадочных и метаморфических пород. Можно думать, что химический состав верхних 16 - 20 км обусловлен теми же геологическими процессами, какие мы сейчас изучаем. Этот состав нам в общих чертах точно известен.
За этими пределами наши знания становятся значительно менее точными не только оттого, что мы не можем сейчас точно установить вещество, к нам оттуда доходящее, но и потому, что состояния вещества в этих пределах высоких и низких давлений нам, несмотря на большие успехи опытных наук, во многом неясны. Но, несомненно, здесь мы стоим на прочной почве — развитие наших знаний идет медленно, но неуклонно. И, очевидно, наши старые представления о земной коре подвергаются коренному пересмотру, который только что начинается.
§ 79. С этой точки зрения необходимо отметить некоторые важные для понимания строения земной коры вырисовывающиеся явления.
Во-первых, в высоких слоях газовой оболочки планеты вещество находится в состоянии, резко отличном от того, какое мы привыкли видеть вокруг нас. Может быть, мы имеем здесь дело (выше 80-100 км) с областью планеты, отличной от земной коры. Здесь, в разреженной материальной среде, в форме электронов и ионов сосредоточены огромные запасы свободной энергии, значение которой в истории планеты нам неясно.
Затем представляется сейчас почти несомненным, что сплошное огненно-жидкое состояние внутренних слоев планеты, проявлением которого считали выливающиеся на земную поверхность вулканические породы, не существует. Необходимо допустить существование больших или малых участков магмы, т. е. переполненного газами вязкого жидкого горячего (600-1000°) силикатного расплава среди преобладающей твердой или полутвердой вязкой горячей оболочки. Ничто не указывает, чтобы очаги магмы проникали всю земную кору и чтобы температура всей коры была столь же высока, как температура этих горячих, богатых газами расплавов.
§ 80. Хотя структура глубинной части земной коры таит еще много загадок, все же успехи науки в этой области за последние годы привели к замечательным достижениям.
Земная кора, по-видимому, состоит из кислых и основных пород, которые мы наблюдаем и на поверхности. Кислые породы, граниты и гранодиориты расположены под континентами, толщина их достигает порядка 15 км, иногда немного меньше. Основные породы господствуют на глубинах.
Под гидросферой они приближаются к земной поверхности. Эти породы беднее свободной энергией, радиоактивными химическими элементами.
Нужно принять существование по меньшей мере трех оболочек ниже земной поверхности. Одна из них, верхняя оболочка, отвечает кислым породам (гранитная оболочка). Она кончается на глубине 9-15 км ниже поверхности и относительно богата радиоактивными элементами.
Около 34 км ниже поверхности в свойствах материи обнаруживается новое большое изменение (X. Жеффрейс, С. Мохоровичич), которое показывает, вероятно, нижнюю границу существования кристаллического состояния вещества. Это вместе с тем верхняя граница стекловатой оболочки Р. Дели (1923). Глубже лежат основные породы, частично кислые породы в состоянии, аналогичном стеклу, в котором они нам незнакомы.
Второе сильное изменение замечается на глубине в среднем около 60 км от земной поверхности; оно, вероятно, является результатом появления тяжелых пород, влияние которых сказывается на сейсмических явлениях; это, может быть, эклогиты[15], плотность которых не меньше 3,3 - 3,4.
Здесь мы входим в область симы; удельный вес пород все увеличивается, и достигает на ее границе 4,3 - 4,4 (Л. Адамс и Е. Вильямсон, 1925). Эти краткие замечания дают лишь очень общее впечатление о сложности явления.
§ 81. Выяснение существования земных оболочек шло эмпирическим путем в течение долгого времени. Некоторые из них, например атмосфера, установлены столетия назад, и их существование вошло в обиход текущей жизни.
Но лишь в конце XIX - начале XX столетия были уловлены основания их выделения, и до сих пор понимание их значения в строении земной коры не вошло в общее научное сознание.
Их выделение тесно связано с химией земной коры, и их существование является следствием того, что все химические процессы земной коры подчиняются одним и тем же механическим законам равновесия.
Благодаря этому в чрезвычайной сложности химической структуры земной коры все же всюду проявляются и бросаются в глаза общие черты, позволяющие различать в сложных природных явлениях — эмпирическим путем — основные их состояния и классифицировать те сложные системы динамических равновесий, которым в таком упрощенном представлении отвечают земные оболочки.
Законы равновесий в общей математической форме были выявлены Ж. Гиббсом (1884-1887), который свел их к соотношениям, могущим существовать между характеризующими химические или физические процессы независимыми переменными, каковыми являются температура, давление, физическое состояние и химический состав принимающих участие в процессах тел.
Все установленные чисто эмпирическим путем земные оболочки (геосферы) могут быть характеризованы некоторыми переменными, которые входят в равновесия, изучавшиеся Гиббсом.
Таким образом, можно различить термодинамические оболочки, определяемые величинами температуры и давления, фазовые оболочки, характеризуемые физическим состоянием (твердым, жидким и т. д.) входящих в их состав тел, и, наконец, химические оболочки, отличающиеся своим химическим составом.
В стороне осталась только оболочка, выделенная Э. Зюссом, — биосфера. Несомненно, все ее реакции подчиняются законам равновесий, но они заключают новый признак, новое независимое переменное, не принятый во внимание Ж. Гиббсом.
§ 82. Обычно принимаемые во внимание независимые переменные неоднородных равновесий, изучаемых в наших химических лабораториях, - температура, давление, состояние и состав вещества — не охватывают всех их форм. Гиббс математически изучал уже электродинамические равновесия. Огромное значение имеют в природных земных равновесиях разнообразные поверхностные силы. Большое внимание обратили на себя в химии явления фотосинтеза, где независимой переменной является лучистая световая энергия. В явлениях кристаллизации мы учитываем векториальные кристаллические энергии: внутреннюю, например в двойниках, и поверхностную — во всех кристаллах.
Вводя в физико-химические процессы земной коры световую солнечную энергию, живые организмы, однако, по существу и резко отличаются от остальных независимых переменных биосферы. Подобно им, живые организмы меняют ход ее равновесий, но в отличие от них представляют особые автономные образования, как бы особые вторичные системы динамических равновесий, в первичном термодинамическом поле биосферы.
Автономность живых организмов является выражением того факта, что термодинамическое поле, им свойственное, обладает совершенно иными параметрами, чем те, которые наблюдаются в биосфере. В связи с этим организмы — многие очень резко — удерживают свою температуру в среде другой температуры, имеют свое внутреннее давление. Они обособлены в биосфере, и ее термодинамическое поле имеет для них значение только в том смысле, что определяет область существования этих автономных систем, но не внутреннее их поле. С химической точки зрения их автономность резко сказывается в том, что химические соединения, в них образующиеся, обычно не могут получиться вне их в обычных условиях косной среды биосферы. Попадая в условия этой среды, они неизбежно оказываются неустойчивыми, в ней разлагаются, переходят в новые тела и этим путем являются в ней нарушителями ее равновесия, источником свободной в ней энергии.
Они получаются в живом веществе нередко в условиях, резко отличных от тех, которые мы наблюдаем в биосфере. В последней, например, никогда не может идти и никогда не наблюдается разложение молекул углекислоты и воды — один из основных биохимических процессов. На нашей планете он может идти только в глубоких областях магмосферы, вне биосферы. В наших лабораториях мы его можем производить только при высоких, не существующих в биосфере температурах. Ясно, что термодинамическое поле живого вещества резко отлично от термодинамического поля биосферы, как бы мы это отличие ни объясняли. Эмпирически живые организмы могут быть описываемы как особые, чуждые биосфере, в ней отграниченные термодинамические поля ничтожных по сравнению с ней размеров, несущие энергию солнечного луча и им в ней создаваемые. Их размеры колеблются в пределах от n • 10-15 до n • 10-12 см3.
Как бы мы ни объясняли их существование и их образование в биосфере, несомненным фактом является изменение всех химических равновесии в биосфере в их присутствии, причем общие законы равновесий не нарушаются, и живые существа, взятые в совокупности, т. е. живое вещество, им отвечающее, могут быть рассматриваемы как особая форма независимых переменных энергетического поля планеты.
§ 83. Это влияние живых существ теснейшим образом связано с их питанием, дыханием, с их разрушением и умиранием, т. е. с теми процессами жизни, при которых химические элементы в них входят и из них выходят.
Эмпирически несомненно, что химические элементы, вступая в живой организм, попадают в такую среду, аналогичной которой они не находят нигде в другом месте на нашей планете.
Мы выражаем это явление, говоря, что, вступая в организмы, химические элементы попадают в новую форму нахождения.
Вся их история в этой форме нахождения чрезвычайно резко отличается от их истории в других частях нашей планеты. Ясно, что это отличие связано с глубоким изменением атомных систем в живом веществе. Есть веские основания думать, что в нем химические элементы не дают смесей изотопов. Это должен решить опыт.
Одно время — многие и до сих пор — приводили в связь особенность истории химических элементов в живом веществе с огромным преобладанием в нем дисперсного состояния соединений элементов, их коллоидальных систем, но такие же коллоидальные системы наблюдаются и в других случаях в биосфере и явно не связаны с живыми организмами. По нашим современным представлениям, дисперсные системы (коллоиды) всегда связаны с молекулами, но не с атомами. Одного этого факта уже достаточно, чтобы искать объяснения различных форм нахождения химических элементов не в коллоидальном состоянии, так как формы нахождения как раз характеризуются состоянием атомов.
§ 84. Понятие формы нахождения химических элементов было введено мною (1921) как эмпирическое обобщение. Под этим понятием я подразумеваю такие особые участки термодинамических полей нахождения атомов, в которых наблюдаются резко различные их проявления, сводимые, по нашим современным представлениям, к различным особым комплексам атомов, иным для каждой из форм их нахождения.
Очевидно, что форм нахождения химических элементов может быть очень много и что далеко не все из них могут наблюдаться в термодинамических полях нашей планеты.
Так, несомненно, атомы звездных систем должны наблюдаться в особых состояниях, невозможных на Земле, и мы видим, что им придают такие особые состояния, например, для объяснения их спектров (ионизированные атомы, по М. Сага) или для полученных наблюдением огромных масс некоторых звезд. Для объяснения этих последних необходимо допустить сосредоточение в их кубическом сантиметре тысяч и даже десятков тысяч граммов вещества (А. Эддингтон)[16]. Эти звездные состояния атомов, очевидно, представляют формы их нахождения, отсутствующие в земной коре. Другие у нас отсутствующие формы их нахождения могут и должны наблюдаться на Солнце, в солнечной короне (газ из электронов), в туманностях, кометах, в земном ядре...
§ 85. Мы выделяем живые вещества как особые формы нахождений атомов чисто эмпирически, не имея пока возможности точно представить себе, какие изменения испытывают вступающие в них атомы.
Однако полное соответствие этой формы нахождения атомов в земной коре с другими, несомненно, особыми формами нахождения заставляет думать, что дальнейшие исследования выявят те изменения, какие воспринимают атомные системы, входя в живое вещество.
Различные формы нахождения атомов в земной коре выделяются эмпирически. Они отличаются одновременно: 1) характерным для каждой формы особым термодинамическим полем; 2) особым атомным проявлением; 3) резко отличной геохимической историей элемента и 4) определенным, часто свойственным только данной форме отношением атомов разных элементов друг к другу (их парагенезисом).
§ 86. В земной коре можно отличить четыре разные формы нахождения химических элементов, через которые они проходят в течение хода времени и которые определяют их историю.
Эти четыре формы суть следующие: 1) горные породы и минералы, где преобладают стойкие и неподвижные молекулы и кристаллы комбинаций элементов; 2) магмы — вязкие смеси газов и жидкостей, находящиеся в состоянии подвижной смеси диссоциационных атомных систем, в которой отсутствуют и кристаллы, и молекулы нашей химии[17]; 3) рассеяния элементов, когда отдельные элементы находятся в свободном состоянии, отделенными друг от друга. Очень возможно, что элементы при этом являются в некоторых случаях ионизированными или потерявшими часть своих электронов[18]; это особое состояние атомов, отвечающее лучистой материи М. Фарадея и У. Крукса; и, наконец, 4) живое вещество, состояние атомов в котором неясно; мы обычно представляем себе эти атомы в состоянии молекул, диссоциационных систем ионов, рассеянных нахождений. Такие представления кажутся мне явно эмпирически недостаточными. Очень вероятно, что в живом организме, помимо изотопов (§ 83), играет известную, не принимаемую нами во внимание роль симметрия атомов (симметрия атомных полей).
§ 87. Формы нахождения атомов (элементов) играют в неоднородных равновесиях ту же самую роль, как и другие независимые переменные — температура, давление, химический состав, физические состояния вещества (фазы). Подобно им, формы нахождения атомов характеризуют меняющиеся с глубиной концентрические оболочки земной коры.
К указанным (§81) термодинамическим фазовым и химическим оболочкам мы должны прибавить благодаря этому особые оболочки по форме нахождения химических элементов. Можно назвать их парагенетическими оболочками, так как в широких чертах они главным образом определяют парагенезис элементов, т. е. законы их совместного нахождения. Биосфера и является одной из таких парагенетических оболочек, наиболее нам доступной и известной.
§ 88. Представление о строении земной коры из определенных термодинамических, химических, фазовых и парагенетических оболочек является одним из типичных эмпирических обобщений. Оно сейчас не имеет объяснения, т. е. не связано ни с одной теорией образования Земли и ни с какими моделями наших представлений о мире.
Из всего ранее сказанного несомненным, однако, представляется, что такое строение является результатом взаимодействия космических сил, с одной стороны, вещества и энергии нашей планеты — с другой, причем и характер вещества — количественные соотношения элементов например, — не случайное явление и не связано только с геологическими причинами.
Это эмпирическое обобщение, схематически представленное в таблице 1, мы положим в основу всего дальнейшего рассмотрения.
Эта таблица, как всякое эмпирическое обобщение, должна была бы рассматриваться как первое приближение к изложению реальности, подлежащее дальнейшим изменениям и дополнениям. Ее значение тем больше, чем больше тот фактический эмпирический материал, на котором она строится.
В этом отношении значение ее очень неравномерно.
Для значительной части первой, верхней, термодинамической оболочки (и соответствующих ей, связанных с другими независимыми переменными оболочек), а также для пятой термодинамической и ниже наши знания основаны на очень малом числе фактов и связаны с нарушающими эмпирическое обобщение конъюнктурами и экстраполяциями.
Поэтому в данной области явлений наши знания очень ненадежны и быстро меняются с ходом научного развития. Мы можем здесь ждать, в связи с ростом физических наук в ближайшие годы, больших новых достижений и изменений господствующих воззрений.
Точная граница между оболочками не может быть в большинстве случаев указана. Все указывает, что поверхности, разделяющие оболочки, меняются с ходом времени; иногда эти изменения идут быстро.
Форма их очень сложная и неустойчивая[19].
I. Термодинамические оболочки | II. Фазовые оболочки | III. Химические оболочки | IV. Парагенетические оболочки | V. Лучистые оболочки |
---|---|---|---|---|
1. Верхняя оболочка: Область ничтожного давления и низкой температуры - 15-600 км (может быть выше 100 км, другая область планеты) | 1. Высокая стратосфера: Разреженные газы. Ионы. Электроны выше 80-100 км | 1. Водородная (?): Может быть распыленный "твердый" азот. Выше 200 км | 1. Атомная оболочка: Область рассеяния элементов. Свободные атомы являются устойчивой формой | 1. Электронная оболочка |
2. Поверхностная оболочка: Давление, близкое к одной атмосфере. Температура в пределах от +50 до -50° | 2. Стратосфера: Разреженные газы, книзу переходят в обычную тропосферу. Выше 10-15 км | 2. Гелиевая (?): 110-200 км | 2. Газовая оболочка, образованная молекулами и атомами (?) | 2. Ультрафиолетовая оболочка: Коротковолновые излучения и проникающие космические лучи. Радиоактивные эманации |
3. Верхняя метаморфическая оболочка (область цементации): Температура еще не достигает критической температуры воды. Давление не нарушает коренным образом свойств твердого тела | 3. Тропосфера (обычный газ): 0-10-15 км | 3. Азотная (?): >70 км (?) | 3. Биосфера: Область жизни и коллоидов | 3. Световая оболочка: Световые излучения, тепловые и радиоактивные эманации |
4. Нижняя метаморфическая оболочка (область анаморфизма): Температура выше критической температуры воды. Давление делает вещество пластическим | 4. Жидкая гидросфера: 0-3,8 км | 4. Азотнокислородная: (атмосфера) | 4. Область молекул и кристаллов: Химические соединения | 4. Тепловая и радиоактивная оболочка: Различные и в общем радиоактивные излучения |
5. Магмосфера: Температура не достигла критического состояния всех тел (?). Граница земной коры (?) | 5. Твердая литосфера: Характеризуется кристаллическим состоянием вещества | 5. Гидросфера: 0-3,8 км | 5. Магматическая оболочка: Отсутствие твердых химических соединений. Полна газами | 5. Тепловые излучения: Радиоактивные процессы отсутствуют |
6. Барисфера: Температура достигла критического состояния для всех тел (?) | 6. Стекловатая литосфера: Твердое кристаллическое состояние вследствие высокой температуры и давления отсутствует. Пластическое стекло, проникнутое газами | 6. Кора выветривания: Характеризуется свободным кислородом, водой, углекислотой | ||
7. Магматическая: Вязкая жидкость, проникнутая газом в горячей твердой среде (?) | 7. Осадочная оболочка (стратисфера): Измененная древняя кора выветривания. До 5 км и больше | |||
8. Газ под большим давлением (?): Закритический газ (?) | 8. Гранитная оболочка: (пара- и ортограниты) | |||
9. Базальтовая | ||||
10. Кремнежелезная (?) |
Для тех вопросов, какие затрагиваются в этих очерках, такой характер наших знаний в этих частях схемы не имеет большого значения, так как биосфера всецело лежит вне этих оболочек земной коры, в той части таблицы, которая основана на огромном эмпирическом материале и свободна от гипотез, угадок, конъюнктур и экстраполяций.
§89. Из всех факторов, определяющих химические равновесия, температура и давление и отвечающие им термодинамические оболочки имеют особое значение. Ибо они всегда существуют для всех форм нахождения вещества, для всех его состояний и химических комбинаций. Наше построение космоса — его модель — всегда термодинамическое. Поэтому в истории земной коры важно различать происхождение вещества и связанные с ним явления, исходящие из разных термодинамических оболочек.
Во всем дальнейшем изложении я буду называть вадозными явлениями тела, связанные со второй термодинамической оболочкой (поверхностной), фреатическими — связанные с третьей и четвертой (метаморфическими) и ювенильными — связанные с пятой.
Вещество из первой и шестой термодинамических оболочек не попадает в биосферу или не замечено в ней.
Живое вещество первого и второго порядка в биосфере
§ 90. Пределы биосферы обусловлены прежде всего полем существования жизни. Жизнь может проявляться только в определенной среде, в определенных физических и химических условиях. Это как раз та среда, которая отвечает биосфере.
Но едва ли можно сомневаться, что поле устойчивости жизни выходит за пределы этой среды. Мы даже не знаем, как далеко оно может выйти за них, так как мы не можем количественно оценивать силу приспособляемости организмов в течение геологического времени. Мы знаем, что приспособляемость зависит от течения времени, есть функция времени и что она проявляется в биосфере в теснейшей связи с сотнями миллионов лет ее существования.
Этих миллионов лет нет в нашем распоряжении, и мы не можем их пока ничем иным заменить в наших опытах.
Все наши опыты над живыми организмами производятся над телами, которые в безмерном времени[20] приспособились к окружающим условиям — к биосфере, выработали нужные для жизни в ней вещества и их строение. Мы знаем, что эти вещества меняются в течение геологического времени, и пределы этого изменения нам неизвестны и не могут быть сейчас выведены из изучения их химического характера[21].
Основным для нас выводом является то, что жизнь в земной коре охватывает область оболочек меньшую, чем поле ее возможного существования, несмотря на то, что изучение природы прочно утвердило и постоянно подтверждает наше убеждение, что жизнь к этим условиям приспособилась, что организмы в смене веков выработали разнообразные формы организации, позволяющие им существовать в биосфере.
Лучше всего мы можем выразить это наше впечатление от изучения природы — это лежащее в основе всей нашей научной работы неосознанное эмпирическое обобщение — утверждением, что жизнь постепенно, медленно приспособляясь, захватила биосферу и что захват этот не закончился (§ 112, 122). Давление жизни (§ 27, 51) сказывается в расширении границ поля жизни в поле биосферы.
Поле устойчивости жизни в связи с этим есть результат приспособляемости в ходе времени. Оно не есть что-нибудь неизменное и неподвижное: пределы его не дают нам полного представления о возможных пределах проявления жизни.
Оно, как указывает изучение палеонтологии и экологии, постепенно, медленно расширяется.
§91. Поле существования живых организмов определяется не только физико-химическими свойствами их вещества, характером и свойствами окружающей их внешней среды, приспособляемостью организма к этим условиям. Для них чрезвычайно характерны и важны условия дыхания и питания, т. е. активного выбора организмами необходимых для их жизни веществ.
Мы уже видели огромное значение газового обмена организмов — дыхания — в установлении их энергетического режима и общего газового режима планеты, ее биосферы. Оно же вместе с питанием организмов, т. е. с передвижением силой их энергии жидких и твердых веществ из окружающей среды в автономное поле организма (§ 82), определяет прежде всего и области их нахождения.
Я уже касался этого явления, когда указывал на захват солнечной энергии зелеными организмами (§ 42). Здесь мы должны остановиться на нем внимательнее.
В явлениях питания и дыхания организмов основным элементом является источник, откуда берут организмы нужные для их жизни вещества.
С этой точки зрения организмы делятся на две резко различные группы: на живое вещество первого порядка — автотрофные организмы, которые в своем питании независимы от других организмов, и живое вещество второго порядка — гетеротрофные и миксотрофные организмы. Деление организмов по их питанию на три группы было введено в 1880-х г. немецким физиологом В. Пфеффером и является крупным эмпирическим обобщением, богатым разнообразными следствиями. Его значение в понимании природы более велико, чем это обычно думают.
Автотрофные организмы строят свое тело целиком из веществ косной, "мертвой", природы; все их "органические" соединения, содержащие азот, кислород, углерод, водород, составляющие главную массу их тела, берутся из минерального царства. Гетеротрофные организмы используют как пищу для жизни органические соединения, созданные другими живыми организмами. В конце концов для их существования необходима предварительная работа автотрофных организмов. В частности, их углерод и азот в значительной или в полной мере получаются из живого вещества. В миксотрофных организмах пищей — по отношению к углероду и азоту — служат соединения, созданные как живым веществом, так и химическими реакциями косной материи.
§ 92. Несомненно, вопрос об источнике, откуда организмы получают нужные им для жизни тела, более сложен, чем это представляется с первого взгляда, но думается, что указанное В. Пфеффером деление есть коренная черта всей живой природы.
Нет ни одного организма, который бы в своем дыхании и питании не был бы связан, хотя бы отчасти, с косной материей. Выделение автотрофных организмов основано на том, что они для всех химических элементов независимы от живого вещества, могут их все получать из окружающей их косной — неживой — среды.
Они берут нужные им для жизни элементы из определенных молекул, соединений элементов.
Но, в конце концов, в среде живого в биосфере огромное количество составляющих ее молекул, необходимых для жизни, является продуктом этой последней и без нее не находилось бы в косной среде. Таков, например, целиком свободный кислород — О2 — и в огромной мере почти все газы, такие, как СО2, NH3, H2S и т. д. Не меньше участие жизни в создании природных водных растворов. С этими водными растворами неразрывно, однако, связаны явления питания и дыхания. Эта природная вода, а не вода химически чистая, необходима для жизни не меньше, чем газовый обмен.
Принимая во внимание это глубокое отражение жизни на характере химических тел косной материи, в среде которой она проявляется, мы должны ограничить независимость от нее автотрофных организмов. Нельзя делать логического заключения, очень обычного, что наблюдаемые ныне автотрофные организмы могли бы одни существовать на нашей планете. Они не только всегда зарождаются от таких же автотрофных организмов, но они получают нужные им для существования элементы из таких форм косной материи, которые бы отсутствовали, если бы жизнь организмов их уже не создала раньше.
§ 93. Так, зеленые автотрофные организмы требуют для своего существования присутствия свободного кислорода. Этот свободный кислород создается ими самими из воды и углекислоты. Он всегда является биохимическим продуктом в косной материи биосферы.
Но, больше того, мы не можем утверждать, что только он один из необходимых для них тел всецело связан в своем существовании с жизнью.
Сейчас Ж. Боттомлеем, например, поставлен вопрос о необходимости для существования водных зеленых растений растворенных в воде сложных органических соединений — ауксономов, как он их назвал. Хотя это утверждение не может считаться вполне установленным, оно чрезвычайно вероятно, так как постепенно все больше и больше выясняется значение в картине природы тех незаметных и обычно забываемых нами примесей органических соединений, которые мы находим всегда во всякой природной воде, пресной или соленой. Все эти органические вещества, количество которых, ежесекундно существующее и создающееся в биосфере, исчисляется многими квадрильонами тонн, может быть больше, создаются жизнью, и мы не можем утверждать, что они связаны в своем происхождении только с автотрофными организмами. Напротив, мы на каждом шагу видим огромное значение богатых азотом соединений этого рода, создаваемых гетеротрофными и миксотрофными организмами как в питании организмов, так и в создании минералов (битумы).
В картине природы мы постоянно видим даже без химического анализа проявление этих тел. Они вызывают морскую или иную пену природной воды, их проявлением являются тонкие цветные пленки, покрывающие непрерывно сотни тысяч, миллионы квадратных километров водных поверхностей, они дают окраску болотных, тундровых рек и озер, черных и бурых рек тропических и подтропических областей. От них не свободен ни один организм — не только тот, который живет в этих водах, но и зеленый покров суши, получающий непрерывно эти тела в дождях и росах, а главным образом в почвенных растворах.
В природных водах количество органических растворенных (частью дисперсных) тел сильно колеблется в пределах от 10-6 до 10-20 %). В среднем оно, очевидно, близко к их проценту в морской воде, т. е. отвечает 1018 - 1020 т. Оно, по-видимому, превышает массу живого вещества.
Представление об их значении входит медленно в научное сознание. У старых натуралистов мы часто находим понимание этого грандиозного явления, иногда в самой неожиданной для нас обстановке.
В 1870-х гг. в небольшой заметке гениальный натуралист Р. Майер указал на их значение в составе целебных вод и в общей экономии природы. Изучение происхождения вадозных и фреатических минералов расширяет их роль еще глубже и значительнее, чем высказывал это Р. Майер.
§ 94. Но биохимический генезис тех тел косной природы, которые необходимы для существования автотрофных организмов, не меняет огромного их отличия от организмов гетеротрофных и миксотрофных. Мы должны только более ограниченно понимать автотрофностъ и не выходить в наших суждениях за пределы этого ограничения.
Мы будем называть автотрофными все организмы, которые берут все нужные им для жизни химические элементы в современной биосфере из окружающей их косной материи и не требуют для построения своего тела готовых органических соединений другого организма.
Как всегда в определениях природных явлений, мы не можем охватить в кратком определении все явление целиком. Мыслимы переходы или сомнительные случаи, например, для сапрофитов, питающихся умершими и разложившимися организмами. Однако для сапрофитов почти всегда, а может быть даже всегда, основная пища состоит из проникающих в трупы и остатки организмов живых микроскопических созданий.
Принимая понятие "автотрофного" организма ограниченным современной биосферой, мы тем самым исключаем возможность делать из него выводы о прошлом Земли—о возможности начала жизни на Земле в виде тех или иных из автотрофных организмов.
Ибо несомненно, что для всех существующих автотрофных организмов (§ 93) необходимо присутствие в биосфере продуктов жизни.
§ 95. Различие между живым веществом первого и второго порядка резче всего сказывается на их нахождении в биосфере. Область нахождения живого вещества второго порядка, связанного в своем существовании, в своей пище, с автотрофными организмами, всегда шире местообитания этих последних.
Среди автотрофных организмов можно различить две резко отличные группы: с одной стороны, зеленые хлорофилльные организмы, зеленые растения, с другой — мир мельчайших, быстро размножающихся бактерий.
Мы уже видели, что зеленые хлорофилльные организмы являются главным механизмом биосферы, который улавливает солнечный луч и создает фотосинтезом химические тела, энергия которых в дальнейшем является источником действенной химической энергии биосферы, а в значительной мере — всей земной коры.
Поле существования этих зеленых автотрофных организмов прежде всего определяется областью проникновения солнечных лучей (§ 23).
Их масса очень велика по сравнению с массой остального живого вещества, может быть близка к его половине (§46).
Мы видим в них приспособления, которые позволяют улавливать ничтожные по интенсивности излучения света, использовать его до конца.
Возможно, что временами были ослабления и усиления количества создаваемого ими зеленого вещества, хотя это очень часто высказываемое мнение не может еще считаться точно установленным.
Огромная масса вещества, ими захваченная, их всюдность, проникновение их всюду, куда проникает солнечный луч, часто заставляет видеть в них основную базу жизни. Допускают, что в течение геологического времени из них образовались многочисленные организмы, создающие живую материю второго порядка. И сейчас существование всего животного мира, огромного количества бесхлорофилльных растительных организмов — грибов, бактерий — целиком ими обусловлено.
Они производят в земной коре самую важную химическую работу— создают свободный кислород, разрушая при фотосинтезе такие стойкие кислородные тела, всюду находящиеся, каковыми являются вода и углекислота. Ту же работу они, несомненно, производили во все далекие геологические периоды. Явления выветривания явно указывают нам на ту же исключительную роль свободного кислорода в археозое, какую он и сейчас играет в современной биосфере. Состав продуктов выветривания, их количественные соотношения, как мы это можем установить, был и в археозое такой же, какой наблюдается сейчас. Очевидно, и источник свободного кислорода был тот же — зеленый растительный мир. Вся масса свободного кислорода была того же порядка, что мы видим и ныне. Мало могли отличаться от современного и в эту далекую, чуждую нам эпоху — сотни миллионов лет назад — и количество зеленого вещества, и энергия порождающего их солнечного луча (§ 57).
Для археозоя мы не имеем остатков зеленых организмов. Они непрерывно идут, начиная с палеозоя, и указывают на необычайно резкое развитие вплоть до нашего времени бесчисленного множества их форм, число которых в наше время, по-видимому, не меньше 200 тыс. видов, а количество всех видов, существующих и существовавших на нашей планете, — число не случайное — не может быть сейчас учтено, так как относительно небольшое число ископаемых их видов (несколько тысяч) выражает только неполноту наших знаний. Оно быстро увеличивается с каждым десятилетием, даже с каждым годом.
§ 96. Гораздо меньшие количества живого вещества собраны в форме автотрофных бактерий. В то время как существование зеленых автотрофных организмов стало ясным в конце XVIII — начале XIX в. и в 1840-х гг. благодаря работам Ж. Буссенго, Ж. Дюма и Ю. Либиха вошло в научное сознание, существование автотрофных, не связанных с солнечным лучом, лишенных хлорофилла бактерий было открыто в конце XIX столетия С. Н. Виноградским и не оказало пока того влияния на научную мысль, какое можно было ожидать. Организмы эти играют огромную роль в геохимической истории серы, железа, азота, углерода, но они не очень разнообразны; известно едва ли больше ста видов, и по своей массе да и по своему значению они не сравнимы с зелеными растениями.
Правда, они рассеяны всюду; мы их находим в почвах, в иле водных бассейнов, в морской воде; но нигде нет тех их количеств, которые были бы сравнимы с количеством автотрофной зелени суши, не говоря уже о зеленом планктоне мирового океана. А между тем геохимическая энергия бактерий гораздо выше той же энергии зеленых растений, превышает ее в несколько раз, иногда в десятки и сотни раз, является максимальной для живых веществ. Правда, кинетическая геохимическая энергия, вычисленная на гектар, будет, в конце концов, одинакова для одноклеточных зеленых водорослей и для бактерий, но, в то время как водоросли могут достигнуть наибольшего стационарного состояния в десятки дней, бактерии в благоприятных условиях достигают их в десятки раз быстрее — в 36-48 часов.
§ 97. Наблюдений над размножением автотрофных бактерий у нас очень мало. По-видимому (Ж. Рейнке), они размножаются медленнее других бактерий; наблюдения над железными бактериями (Н. Г. Холодный) не противоречат этому утверждению. Так, эти бактерии делятся 1 - 2 раза в сутки (формула), тогда как такое деление для обычных бактерий может наблюдаться только при неблагоприятных условиях их жизни. Так, например, Bacillus ramosus, живущая в реках и дающая при благоприятных условиях не менее 48 поколений в сутки, дает при низких температурах всего четыре поколения (М. Уорд, 1925).
Если даже такое понижение быстроты размножения автотрофных бактерий по сравнению с другими бактериями окажется общим явлением для них всех, все же быстрота их размножения будет отвечать наибольшей, но не средней скорости передачи жизни зеленых одноклеточных растений. Надо было бы ждать поэтому, что их количества будут гораздо больше масс зеленых организмов и что то явление, какое мы наблюдаем в море для одноклеточных водорослей (§ 51), — их преобладание над зелеными метафитами — будет существовать для бактерий по сравнению с зелеными протистами.
§ 98. В действительности этого нет. Причина малого скопления живой материи в этой форме жизни очень аналогична причине, обусловливающей преобладание зеленых метафитов над зелеными протистами на суше (§ 49).
Их чрезвычайная всюдность, проникновение ими, например, всех толщ океана — далеко за пределы тех слоев, куда проникает солнечный луч, заставляет думать, что причина относительно малых их количеств в биосфере, выявляющаяся для всех столь различных их разностей, как бактерии азотные, серные или железные, должна быть причиной не частного, а общего характера.
Такую причину можно видеть в совершенно особых условиях их питания, т. е. в условиях возможности их существования.
Все они получают нужную им для жизни энергию, окисляя не вполне окисленные или неокисленные соединения азота, серы, железа, марганца, углерода в их высшие степени окисления. Но нужные исходные, бедные кислородом тела — вадозные минералы этих элементов — никогда не могут быть в биосфере собраны в достаточных количествах. Ибо область биосферы в общем есть химическая область окисления, так как она переполнена свободным кислородом — созданием зеленых организмов. В этой богатой кислородом среде устойчивыми формами, даже помимо влияния жизни, являются наиболее окисленные, богатые кислородом соединения.
В связи с этим автотрофные организмы должны выискивать среду своего бытия. И с этим обстоятельством связаны приспособления их организации.
Они могут— а некоторые, как азотные бактерии, по-видимому, так действуют всегда— окислять кислородные соединения, добывать нужную для жизни энергию, окисляя низшие степени окисления в высшие, но количество химических элементов, допускающих этого рода реакции, ограничено; к тому же в избытке свободного кислорода те же богатые кислородом тела получаются помимо бактерий, так как в этой именно среде они являются устойчивой формой молекулярных структур.
§ 99. Автотрофные бактерии находятся в состоянии непрерывного недостатка пищи, в состоянии недоедания. С этим связаны многочисленные приспособления их жизни. Так, всюду — в грязях, источниках, в морской воде, сырых почвах — мы видим своеобразные вторичные равновесия между бактериями, восстанавливающими сульфаты, и автотрофными организмами, их окисляющими.
Повторение в бесчисленных случаях, на каждом шагу, таких вторичных равновесий указывает на закономерность явления. Живое вещество выработало эти структуры благодаря огромному давлению жизни автотрофных бактерий (§ 27), не находящих для своей жизни в биосфере достаточного числа готовых, бедных кислородом соединений. Живое вещество создает их в этих случаях само в косной среде.
В океанах такие же равновесия наблюдаются между автотрофными бактериями, окисляющими азот, и раскисляющими нитраты гетеротрофными организмами. Это одно из грандиозных равновесий химии гидросферы.
Всюдность нахождения этих организмов служит проявлением их огромной геохимической энергии, быстроты передачи их жизни: отсутствие их больших скоплений где бы то ни было связано с недостатком бедных кислородом соединений в биосфере, в среде, где все время выделяется избыток свободного кислорода зелеными растениями.
Они не захватывают значительных масс живого вещества только вследствие физической невозможности это сделать благодаря отсутствию в биосфере нужных для их жизни соединений.
Между количеством вещества, захваченного автотрофными зелеными организмами и автотрофными бактериями, должны существовать определенные соотношения, обусловленные большим значением геохимической энергии преобладающих по массе организмов, создающих свободный кислород.
§ 100. Не раз высказывались мнения, что в этих своеобразных, очень специальных организмах мы имеем представителей наиболее древних организмов, появившихся раньше зеленых растений. Еще недавно эти идеи высказывал один из крупных натуралистов-мыслителей нашего времени — американец Г. Ф. Осборн (1918).
Наблюдение их роли в биосфере этому противоречит.
Тесная связь существования этих организмов с присутствием свободного кислорода указывает на их зависимость от зеленых организмов — от солнечной лучистой энергии — в не меньшей степени, чем зависят от нее животные и бесхлорофилльные растения, питающиеся веществами, приготовленными зелеными растениями. Ибо в природе — в биосфере — весь свободный кислород, пища этих тел, есть продукт зеленых растений.
На то же — вторичное — значение этих организмов по сравнению с зелеными растениями указывает и характер их функций в общей экономии живой природы.
Значение их огромно в биогеохимической истории и серы, и азота — двух элементов, столь необходимых для построения главного вещества протоплазмы — белковых молекул. Однако, если бы деятельность этих автотрофных организмов прекратилась, жизнь, может быть, уменьшилась бы количественно, но осталась бы мощным механизмом биосферы, так как те же вадозные соединения — нитраты, сульфаты и газообразные формы переноса в биосфере азота и серы, аммиак и сероводород — постоянно создаются в ней в значительных количествах помимо жизни.
Не предрешая вопроса об автотрофности (§ 94) и начале жизни на Земле, можно сказать, что зависимость автотрофных бактерий от зеленых организмов, их вторичное по сравнению с ними образование, по крайней мере, очень вероятна.
Все указывает на то, что в этих автотрофных организмах мы имеем формы жизни, увеличивающие использование до конца энергии солнечного луча, наблюдаем улучшение механизма "солнечный луч — зеленый организм", а не независимую от космических излучений форму земной жизни.
Таким же проявлением того же процесса является весь бесчисленный в своих формах гетеротрофный мир животных и грибов — миллионы видов организмов.
§ 101. Это ярко сказывается и в характере распределения живого в биосфере, в области жизни.
Она целиком определяется полем устойчивости зеленой растительности, другими словами — областью планеты, пронизанной солнечным светом.
Главная масса живого вещества сосредоточена в этой охваченной солнечным светом части планеты; при этом сгущения жизни тем больше, чем ярче это освещение.
Здесь же собраны гетеротрофные организмы и автотрофные бактерии, так как в своем существовании они тесно связаны или с продуктами жизни зеленых организмов (свободный кислород прежде всего), или с создаваемыми ими сложными органическими соединениями.
Из этой освещенной Солнцем части в области биосферы, лишенные солнечных лучей и зеленой жизни, проникают гетеротрофные организмы и автотрофные бактерии. Многие из них живут исключительно в этих темных областях биосферы. Обычно полагают, что эти организмы проникли сюда из освещенной Солнцем земной поверхности, постепенно приспособившись к новым условиям жизни. Можно это думать, так как морфологическое изучение животного мира земных пещер и морских глубин указывает, очень часто с несомненностью, что фауна эта произошла от предков, живших в освещенных областях планеты.
Особое значение с геохимической точки зрения приобретают скопления — концентрации — жизни, свободной от зеленых организмов: донная живая пленка гидросферы (§ 130), нижние части прибрежных сгущений жизни Океана, донные живые пленки водных бассейнов суши (§ 156). Мы увидим их огромное значение в химической истории планеты. Можно убедиться, что их существование теснейшим образом связано, прямо или косвенно, с организмами зеленых областей жизни. Не только морфологически можно во многих случаях установить, а в других — научно допустить генезис этих организмов путем палеонтологической эволюции из организмов освещенных частей планеты, но и в основе их каждодневного бытия лежит лучистая энергия Солнца.
Само существование этих донных пленок теснейшим образом связано с остатками организмов верхних частей Океана, падающих на дно и не успевающих на пути разложиться или быть съеденными другими организмами. Конечный источник ее энергии, таким образом, следует искать в освещенной части планеты, в солнечном свете. Из атмосферы проникает в морскую воду, в темные глубины, свободный кислород, иного, кроме биохимического, происхождения, создание которого работой зеленых организмов на нашей планете мы не знаем. Анаэробные организмы, характерные для нижних частей донной пленки, все теснейшим образом зависят в своей жизни от аэробных организмов и их остатков, которыми они питаются.
Все указывает, что эти проявления жизни в лишенных света областях планеты находятся в непрерывном развитии — площадь их увеличивается.
По-видимому, в течение геологического времени шло — и сейчас медленно идет — постоянное новое проникновение живого вещества в обе стороны от зеленого покрова все дальше и дальше в азойные части планеты.
Мы живем сейчас в этой стадии медленного расширения области жизни.
§ 102. Может быть, одним из проявлений этого расширения жизни является биохимическое создание новых форм лучистой энергии гетеротрофным живым веществом.
В морских глубинах усиливается свечение организмов, излучение ими световых волн той же длины, которые в космических излияниях Солнца на земную поверхность дают энергию жизни и через нее — химическим изменениям планеты.
Мы знаем, что проявление этих вторичных световых излучений — свечение поверхности моря, непрерывно происходящее на нашей планете и охватывающее одновременно сотни тысяч квадратных километров его поверхности, - позволяет зеленым организмам планктона производить свою химическую работу и в те часы, когда до них не доходит лучистая энергия центрального светила.
Является ли новым проявлением того же механизма и свечение морских глубин? Есть ли здесь усиление жизни благодаря переносу вглубь на километры от поверхности космической энергии Солнца, которая к ним без этого не доходит?
Мы этого не знаем. Но нельзя забывать факта, что глубоководные экспедиции встречали живые зеленые организмы на глубинах, значительно превышающих область проникновения в море солнечных излучений сверху; например, "Вальдивия" встретила живую водоросль Halionella в Тихом океане на глубине около 2 км.
Если бы оказалось, что живое вещество способно переносить в новые области лучистую энергию Солнца не только в форме неустойчивых в термодинамической оболочке, которой отвечает биосфера (§ 82), химических соединений, т. е. в форме химической энергии, но и в виде вторично созданной лучистой же энергии, то все же в истории биосферы это явилось бы лишь, пока может быть, небольшим расширением главной области фотосинтеза, как незначительным ее расширением является создание световой энергии человечеством.
Несомненно, и эта, новая в биосфере, создаваемая человеком лучистая энергия используется зеленым живым веществом, но пока в общем космическом фотосинтезе планеты она отражается ничтожными долями. В конце концов, зеленое живое вещество, определяющее на Земле область существования всего живого, — все связано с солнечным светом.
Во всем нашем дальнейшем изложении мы будем выделять эту часть живого вещества первого порядка и относить к нему все другие проявления жизни.
Пределы жизни
§ 103. Поле устойчивости жизни далеко, как мы увидим, превышает поле биосферы, определяемое характеризующими ее независимыми переменными, принимаемыми во внимание при изучении могущих иметь в ней место физико-химических равновесий.
Поле устойчивости жизни определяет область, в которой жизнь может достигнуть полного развития. Оно, по-видимому, подвижно и не имеет строгих границ.
Характерным свойством живого вещества является его изменчивость, его способность приспособляться к условиям внешней среды. Благодаря этой способности живые организмы могут в течение даже немногих поколений приспособиться к жизни при таких условиях, которые для прежних поколений были бы гибельны.
В настоящее время нет возможности подтвердить эту способность к изменчивости при помощи эксперимента, так как мы не располагаем геологическим временем, нужным для ее проявления. Живое вещество, совокупность живых организмов, резко отличается от косного вещества: это подвижное равновесие, которое оказывает давление на окружающую среду, но связь воздействия этого давления с продолжительностью времени неясна.
Такое поле устойчивости жизни, связанное с изменчивостью организмов, является к тому же гетерогенным, т. е. неоднородным. Оно резко делится на два поля: гравитационное поле, поле более крупных организмов, и поле молекулярных сил, к которому относятся мельчайшие организмы, меньше 10-4степени в диаметре, микробы, ультрамикробы и т. д., жизнь которых, и в особенности движения, определяется не тяготением, а излучениями — как световыми, так и другими.
Протяженность каждого из этих полей определяется изменчивостью организмов, их приспособляемостью; и то и другое еще недостаточно изучены.
Мы будем принимать, таким образом, во внимание: 1) температуру, 2) давление, 3) фазу среды, 4) химизм среды, 5) лучистую энергию. Это важнейшие признаки, характеризующие оба поля устойчивости жизни.
§ 104. Мы должны при этом различать условия, которые выдерживает жизнь, не прекращая всех своих функций, т. е. те, при которых организм хотя и страдает, но выживает, и, во-вторых условия, при которых организм может давать потомство, т. е. увеличивать живую массу — увеличивать действенную энергию планеты.
Может быть, ввиду генетической связи всего живого вещества, эти условия близки для всех организмов. Но область эта значительно уже для зеленого растительного покрова, чем для гетеротрофных организмов.
Предел ее определяется, в конце концов, физико-химическими свойствами соединений, строящих организм, их неразрушимостью в определенных условиях среды. Но есть ряд случаев, которые указывают, что раньше разрушения соединений разрушаются те механизмы, которые они составляют и которые определяют функции жизни.
И сами соединения, и построенные ими механизмы непрерывно меняются в ходе геологического времени, приспособляясь к изменению среды жизни.
Максимальное поле жизни может определяться крайними примерами выживания каких-нибудь организмов.
§ 105. Самая высокая температура, которая выдерживается без смерти организма некоторыми гетеротрофными существами, особенно в латентной форме их бытия, например спорами грибов, приближается к 140°. Она меняется в зависимости от того, наблюдается ли организм в сухой или во влажной среде.
Опыты Л. Пастера над произвольным зарождением выяснили, что нагревание во влажной среде до 120° не убивает всех спор микробов. В сухой среде надо нагревать до 180° (М. Duclaux)[22]. В опытах М. Христена споры почвенных бактерий выдерживали нагревание, не теряя жизни, до 130° в течение пяти минут, до 140° — в течение минуты. Споры одной бактерии, описанной М. Цеттновым, выдерживали текучий пар в течение суток (В. Л. Омелянский).
Еще дальше идет устойчивость при низкой температуре. Опыты в Дженнеровском институте в Лондоне указали на устойчивость (в жидком водороде) спор бактерий в течение 20 часов при —252° С. Макфайден указал, что микроорганизмы сохранялись без потери жизни в жидком воздухе в течение многих месяцев при —200°. По опытам А. Беккереля, споры плесневых грибков в безвоздушном пространстве не теряли жизнеспособности в течение трех суток при —253°.
Таким образом, надо считать, что интервал в 433 градуса является сейчас предельным тепловым полем, в котором в течение некоторого времени могут находиться без гибели и разрушения некоторые формы жизни. Он резко сокращается для зеленой растительности. Мы не имеем для нее вполне точных опытов, но едва ли он превышает 160 - 150° (от 80° до - 60°).
§ 106. Пределы давления — динамического поля жизни, по-видимому, идут очень далеко. Опыты Г. В. Хлопина и Г. Таманна указали, что плесневые грибы, бактерии, дрожжи выдерживают давление до 3 тыс. атмосфер без всякого видимого изменения своих свойств. Жизнь дрожжей сохраняется при 8 тыс. атмосфер давления. С другой стороны, несомненно, что латентные формы жизни — семена или споры — могут сохраняться длительное время в "безвоздушном" пространстве, т. е. при давлениях, равных тысячным долям атмосферы.
По-видимому, нет разницы между гетеротрофными и зелеными (споры, семена) организмами.
§ 107. Огромное значение волн определенной длины лучистой энергии для зеленых растений было уже многократно указано. Оно лежит в основе всего строения биосферы.
Зеленые организмы более или менее быстро умирают в отсутствие этих излучений. Гетеротрофные организмы и автотрофные бактерии — некоторые из них по крайней мере — могут жить в темноте. Но характер лучистой среды этой "темноты" (длинных инфракрасных волн) не изучен.
Нам известен, с другой стороны, предел всякой жизни в области коротких волн.
Среда, в которой распространяются ультрафиолетовые лучи с очень короткой длиной волны, меньше 0, 3 mμ, неизбежно является безжизненной. Опыты А. Беккереля показали, что эти лучи с чрезвычайно быстрым колебанием составляющих их волн убивают в течение короткого промежутка времени все формы жизни. Среда, в которой они находятся, какой является междупланетное пространство, непроходима для всех форм жизни, приспособившихся к биосфере, хотя ни температура, ни давление, ни химический ее характер не препятствуют нахождению жизни в ней.
При той связи, какая, как мы видим, существует между развитием жизни в биосфере и солнечной радиацией, возможно точное и детальное изучение пределов жизни в разных областях лучистой энергии заслуживает самого большого внимания.
§ 108. Огромна область химических изменений, которые выдерживает жизнь.
Открытие Л. Пастером анаэробных организмов указало на существование жизни в среде, лишенной свободного кислорода, и чрезвычайно расширило допускавшиеся раньше ее пределы.
Установление С. Н. Виноградским автотрофных организмов выяснило возможность существования жизни в отсутствие готовых органических соединений, в чисто минеральной среде.
Споры и зерна, латентные формы жизни, могут находиться без всякого вреда, по-видимому, неопределенное время в среде, лишенной газов и вполне сухой, лишенной воды.
В то же время в пределах термодинамического поля существования жизни разные ее формы могут находиться без вреда в самых разнообразных химических средах. Bacillus boracicola, живущая в горячих борных источниках Тосканы, может жить в насыщенном растворе борной кислоты; она свободно выдерживает 10 %-ный раствор серной кислоты при обычной температуре (М. Bargagli Petrucci, 1914). Известен целый ряд организмов, главным образом плесневых грибов, которые живут в крепких растворах различных солей, гибельных для других организмов. Есть грибки, живущие в насыщенных растворах купороса, селитры, ниобата калия. Та же Bacillus boracicola выдерживает 0, 3-ный раствор сулемы, а другие бактерии и инфузории живут даже в ее концентрированных растворах (А. М. Безредка, 1925); дрожжи живут в растворах фтористого натрия. Личинки некоторых мух выживают в 10 %-ном растворе формалина.
Существуют бактерии, которые размножаются в атмосфере свободного кислорода.
Область этих явлений относительно мало изучена, но приспособляемость форм жизни кажется здесь беспредельной.
Однако это верно лишь для гетеротрофных организмов. Развитие зеленных организмов требует присутствия свободного кислорода (хотя бы растворенного в воде). Крепкие соляные рассолы уже не дают возможности развития этих форм жизни.
§ 109. Хотя некоторые формы жизни, в латентном ее состоянии, могут находиться без гибели в среде, лишенной воды, абсолютно сухой, вода в капельно-жидком и газообразном состоянии является необходимым условием для роста и размножения организмов, для их проявления в биосфере.
Геохимическая энергия организмов в форме их размножения переходит из потенциальной формы в свободную только в присутствии воды, содержащей в растворе нужные для дыхания организмов газы.
Значение воды, ярко бросающееся в глаза для зеленой растительности, давно вошло в общее сознание. Основа всего живого — зеленая жизнь — без воды не существует.
Но в последнее время можно было пойти дальше в выяснении механизма действия воды. Выяснилось значение для жизни кислой или щелочной реакции водных растворов, в которых живут организмы, степени и характера их ионизации.
Значение этих явлений огромно, так как в природной воде сосредоточена в биосфере главная масса (по весу) живого вещества и условия жизни всех организмов теснейшим образом связаны с природными водными растворами. Все организмы состоят в подавляющей массе своего вещества из водных растворов или водных золей[23]. Протоплазма может быть рассматриваема как водный золь, в котором происходят коллоидальные сгущения и изменения. Везде в жидкостях организма идут явления ионизации, и при непрерывном взаимодействии между природными водными растворами и между жидкостями живущих в них организмов соотношения ионизации обеих сред имеют огромное значение.
Благодаря тонким приемам исследования мы можем количественно следить с очень большой точностью за изменением ионизации и этим путем имеем превосходное средство для изучения изменения главной среды, где сосредоточена жизнь.
Морская вода содержит около 10-9 % ионов Н+, она слабо щелочна, и это небольшое преобладание положительных ионов Н+ над отрицательными ионами ОН- сохраняется в общем неизменно, постоянно восстанавливается, несмотря на бесчисленные химические процессы, идущие в море (ионизация рН=8).
Эта ионизация очень благоприятна для жизни морских организмов, причем небольшие колебания отражаются благоприятно или неблагоприятно, различно для разных организмов.
Выяснено, что жизнь может существовать только в известных пределах ионизации, от 10-6 % Н+ до 10-10% Н+. За этими пределами никакая жизнь в водных растворах невозможна.
§ 110. Несомненно, фаза среды имеет огромное значение для проявления жизни.
Сохраняться в латентном состоянии жизнь, по-видимому, может в среде всякой фазы — жидкой, твердой, газообразной, в "безвоздушном" пространстве. По крайней мере, опыты показывают, что семена могут сохраняться некоторое время без газового обмена, следовательно, в любой фазе в пределах теплового поля жизни. Но живой организм в полном развитии своих функций неизбежно связан в своем существовании с возможностью газового обмена (дыхание) и устойчивости коллоидных систем, из которых он построен.
Поэтому организмы могут встречаться только в той среде, где этот обмен возможен: в жидкой, коллоидальной, газообразной. В твердой среде они могут наблюдаться и действительно наблюдаются только в среде рыхлой и пористой, дающей возможность газового обмена. Ввиду малого размера многих организмов твердые среды, весьма плотные, могут являться субстратом жизни.
Но жидкая — раствор или коллоид — лишенная газов среда не может являться областью жизни.
Мы видим здесь опять проявление того исключительного значения газообразного состояния материи, с которым мы не раз сталкивались в этих очерках.
Границы живого в биосфере
§ 111. Из предыдущего ясно, что биосфера по своему строению, составу, физическим условиям среды целиком входит в область жизни.
Жизнь приспособилась к ее условиям, и в ней нет мест, где бы она так или иначе не могла в ней проявиться.
Это, безусловно верно, если мы будем принимать обычные, нормальные условия биосферы, а не те временные, мимолетные их нарушения, которые являются губительными для жизни, но не могут считаться для нее характерными. В условиях биосферы недоступны для жизни кратеры вулканов во время извержений и не застывшие еще с поверхности лавы. Это в ее существовании ничтожные и временные частности.
Такими же временными явлениями должны считаться сопровождающие вулканические процессы выходы ядовитых для жизни газов (например, хлористого или фтористого водорода) или горячие вулканические минеральные источники, лишенные жизни.
Длительные явления, например термы с температурой до 90°, уже оказываются захваченными отвечающими им своеобразными, приспособившимися к этим условиям организмами.
Неясно, не могут ли быть безжизненны земные рассолы, т. е. растворы, содержащие больше 5 % солей. Самое большое скопление такой безжизненной соленой воды указывается в Мертвом море в Палестине. Но источники-рассолы, еще более богатые солями, чем оно, богаты жизнью. Ее отсутствие в Мертвом море объясняют богатством его бромом, но это гипотеза — догадка, не опирающаяся на опыты. Может быть, наше представление о Мертвом море обусловлено неполнотой наших знаний — неизученностью его микрофауны, частью бактериальной.
Несомненно, что некоторые из кислых серных или соляных природных вод, ионизация которых меньше 10-11 % Н+, должны быть безжизненны (§ 109). Они образуют в общем ничтожные водоемы.
§ 112. В общем, можно считать, что земная оболочка, в которой наблюдается живое вещество, всецело отвечает полю существования жизни. Это оболочка непрерывная, подобно атмосфере, и этим она отличается от таких прерывчатых оболочек, какой является гидросфера.
Но земное поле устойчивости жизни далеко не целиком занято живым веществом. Мы наблюдаем медленное движение жизни в новые области, завоевание ею этого поля в течение геологического времени.
В земном поле устойчивости жизни надо отличить, во-первых, область временного проникновения — без быстрой гибели — живых организмов, во-вторых, область длительного их существования, неизбежно связанного с проявлением размножения.
Крайние пределы жизни в биосфере должны определяться существованием в ней условий, непреодолимых для всех организмов.
Для этого достаточно, чтобы даже одно какое-нибудь условие (независимое переменное равновесия) достигло величины, непреодолимой для живого вещества, будь то температура, химический состав или ионизация среды, длина волн излучений.
Нельзя не отметить, что такие определения не могут иметь безусловного характера. То, что мы называем приспособляемостью организма, его умением защищаться от вредных условий среды, огромно, и пределы его нам неизвестны, особенно если мы примем во внимание время.
Устанавливая эти пределы на основании нами сейчас наблюдаемых возможностей выживания, мы неизбежно всегда логически вступаем в область экстраполяций, всегда область скользкую и неверную.
В частности, человек, одаренный разумом и умело направляемой волей, может достигать непосредственно или посредственно областей, недоступных для остального живого.
При единстве всего живого, которое, как мы видим, бросается в глаза на каждом шагу при охвате жизни как планетного явления, такое свойство Homo sapiens не может быть рассматриваемо как случайное явление.
Его существование еще больше заставляет относиться осторожно к незыблемости в биосфере границ жизни.
§ 113. Такое определение пределов жизни, основанное на возможности нахождения и существования организмов в их современных формах и амплитудах приспособляемости, ясно указывает характер биосферы как оболочки, ибо исключающие жизнь условия проявляются на всей поверхности планеты одновременно.
Достаточно поэтому определить только верхний и нижний пределы поля жизни.
Верхний предел обусловливается лучистой энергией, присутствие которой исключает жизнь.
Нижний предел связан с достижением высокой температуры, ставящей предел жизни с неменьшей необходимостью.
В пределах, этим путем установленных, жизнь охватывает — не целиком, правда, — одну термодинамическую оболочку, три химических и три фазовых (§ 88).
Значение этих последних— тропосферы, гидросферы и верхней части литосферы — наиболее ярко сказывается в ее явлениях, и их мы положим в основу нашего изложения.
§ 114. Жизнь, по-видимому, ни в каких своих современных нам известных формах не может зайти за пределы стратосферы, по крайней мере, верхних ее частей.
Как видно из табл. 1 (§ 88), здесь начинается другая парагенетическая оболочка, где едва ли существуют какие бы то ни было химические молекулы или еще более сложные их комплексы.
Это область высочайшего разрежения материи, даже если принимать новые исчисления проф. В. Г. Фесенкова (1923-1924), дающие для нее большие количества материи, чем это принимали раньше. Проф. В. Г. Фесенков полагает, что на высоте 150-200 км стратосфера заключает тонну вещества в 1 км3 [23]. Новые условия нахождения атомов этой разреженной материи не являются только следствием ее разрежения — уменьшения столкновения газовых частиц, удлинения их свободных траекторий. Они связаны с могучим действием ультрафиолетовых и, может быть, других лучей Солнца (а может быть, и космических пространств), беспрепятственно достигающих этих крайних пределов нашей планеты (§ 8).
Мы знаем, что ультрафиолетовые лучи являются чрезвычайно активными химическими деятелями. В частности, лучи очень коротких волн, меньше 200mμ (160-180 mμ), уничтожают всякую жизнь, самые устойчивые споры в сухой или безвоздушной среде. По-видимому, несомненно, что данные лучи освещают эти далекие области планеты.
§ 115. Ниже они не проходят, так как совершенно поглощаются озоном, образующимся постоянно в стратосфере в относительно значительных количествах из свободного кислорода и, может быть, воды под влиянием тех же ультрафиолетовых излучений Солнца, которые он задерживает и которые губительны для жизни.
Озон стратосферы образовал бы, по С. Фабри и Г. Бюссону, слой 5 мм мощностью, если бы он был собран весь вместе в чистом виде. Но и в рассеянных атомах эти количества озона достаточны, чтобы не пропустить всех вредных для жизни излучений.
Сколько бы ни разрушался озон, он постоянно восстанавливается, так как лучи колебаний короче 200 mμ встречают все время в стратосфере, в нижних ее слоях, избыточное количество атомов кислорода.
Жизнь защищена в своем существовании экраном озона в 5 мм мощностью, являющимся естественной верхней границей биосферы.
Характерно, что необходимый для создания озона свободный кислород образуется в биосфере только биохимическим путем; он должен исчезнуть из нее при прекращении жизни. Жизнь, создавая в земной коре свободный кислород, тем самым создает озон и предохраняет биосферу от губительных коротких излучений небесных светил.
Ясно, что новейшее проявление жизни — культурный человек — может предохранить себя иначе и проникнуть безнаказанно за озонный экран.
§ 116. Озонный экран определяет только верхнюю границу возможной жизни.
В действительности она прекращается в атмосфере гораздо ниже. Зеленые автотрофные растения не подымаются над зеленым древесным и травяным покровом суши. Нет зеленых клеток, развивающихся в воздушной среде. Случайно и невысоко, в брызгах океана, подымаются зеленые клетки планктона.
Выше древесной растительности организмы могут попадать или механически или благодаря выработанным приспособлениям летания. Чрезвычайно редко этим путем могут далеко и надолго проникать в атмосферу зеленые организмы.
Мельчайшие споры, например хвойных или тайнобрачных, лишены хлорофилла или бедны им, а это, вероятно, величайшие массы зеленых организмов, разносимые ветром и поднимающиеся иногда, ненадолго на довольно значительную высоту.
Главная масса живого вещества, проникающего в атмосферу, состоит из живой материи второго порядка. К ней принадлежат все летающие организмы. Зеленый слой нашей планеты, где начинается превращение солнечных радиаций в земную химическую энергию, расположен на поверхности суши и в верхнем слое океана; он не подымается далеко в атмосферу.
В геологическое время, однако, он расширил в ней область своего нахождения. Ибо в стремлении уловить наибольшее количество солнечной энергии зеленый растительный организм проник далеко в нижние слои тропосферы; он поднялся на десятки, более — сотни метров от ее поверхности в форме высоких деревьев и их скоплениях в лесных массивах. Эти формы жизни выработаны организмами, по-видимому, в палеозое.
§117. Жизнь проникает в атмосферу и долго в ней держится главным образом в виде мельчайших бактерий и спор, в летающих формах животных.
Относительные ее концентрации, главным образом в виде латентных форм (спор микроскопических организмов), могут наблюдаться только в "пылевой атмосфере", т. е. в тех частях воздушного покрова, куда проникает пыль с земной поверхности. Пылевая атмосфера связана главным образом с сушей. Эта пылевая атмосфера, по А. Клоссовскому (1910), достигает 5 км, а по О. Менгелю (Mengel, 1922), значительные скопления пыли не подымаются выше 2,8 км. Главная часть пыли, однако, косная материя.
На горных вершинах воздух очень беден организмами, все же они там существуют. По определению Л. Пастера, в среднем здесь находится не больше 4-5 микробов, патогенных, открываемых питательными жидкостями, в 1 м3. М. Флемминг в воздухе на высоте в 4 км обнаружил в среднем не более одного патогенного микроба на 3 л. По-видимому, в верхних слоях микрофлора воздуха обедняется бактериями и обогащается плесневыми и дрожжевыми грибками (В. Л. Омелянский).
Не может быть сомнения, что эта микрофлора проникает за средние пределы пылевой атмосферы (5 км), но число точных наблюдений здесь, к сожалению, ничтожно. Она может достигать пределов тропосферы (9-13 км), так как сюда достигают наблюдаемые нами на поверхности Земли движения газов — ветры и токи воздуха.
Едва ли эти высокие поднятия над поверхностью Земли имеют какое-нибудь значение в ее истории, так как огромное большинство этих организмов находится в латентном состоянии и они едва заметны в массе, хотя и разреженной, косного газа, среди которого они рассеяны.
§ 118. Неясно, заходят ли за пределы тропосферы животные. Правда, они подымаются иногда на большие расстояния, выше высочайших горных вершин (всегда лежащих еще в пределах тропосферы), т. е. доходят до ее верхней границы.
Так, по наблюдениям А. Гумбольдта, кондор в своем полете подымается до 7 км от земной поверхности; он наблюдал мух на вершине Чимборасо (5882 м).
Эти наблюдения А. Гумбольдта и некоторых старых натуралистов отрицались современными орнитологами, изучавшими на проходных станциях перелеты птиц, но новейшие наблюдения Уолластона (1923), натуралиста английской экспедиции на Эверест, не оставляют сомнения, что некоторые горные хищники подымаются или парят около вершин высочайших гор, выше 7 км (7540 м).
По-видимому, это немногие, отдельные виды птиц. Вдали от горных вершин и даже в горных областях птицы едва ли долетают до 5 км. Наблюдения летчиков указывают поднятия до 3 км (для орла).
Бабочки наблюдались на высоте 6, 4 км, пауки — до 6, 7 км, тли — до 8, 2 км, из растений Arenaria muscosa и Delphinium glaciale — на высоте 6,2-6,3 км (М. Hingston, 1925).
§ 119. Дальше всего проникает в стратосферу человек, и он несет с собою вполне бессознательно и неизбежно следующие за ним, в нем и на нем самом или в его изделиях формы жизни.
Область проникновения человека все расширяется с развитием воздухоплавания, и пределы ее выходят уже из области жизни, определяемой озоновым покровом.
Выше всего подымаются шары-зонды, всегда заключающие в своем материале представителей жизни. 17 декабря 1913 г. такой шар-зонд, пущенный в Павии, достиг высоты 37,7 км.
Сам человек в своих аппаратах подымается выше высочайших гор. Уже в воздушных шарах Г. Тиссандье (1875) и Ж. Глэшер (1868) почти достигли этого предела, первый достиг до 8,6 км, второй — 8,83 км.
С развитием аэропланов высота поднятия достигла пределов стратосферы. Француз М. Каллизо и американец М. Мак-Реди (1925) достигли 12-12,1 км, и очевидно, эта высота быстро будет превзойдена. Постоянные поселения человека, его деревни встречаются на высоте 5,1-5,2 км (Перу, Тибет), его железные дороги — на высоте 4,77 км (Перу), его возделанные поля — на высоте 4,65 км.
§ 120. Подводя итоги, можно утверждать, что жизнь, проявляющаяся в биосфере, достигает своего земного предела — озонового экрана — только для редких отдельных своих неделимых. В главной своей массе не только стратосфера, но и верхние слои тропосферы безжизненны.
Нет ни одного организма, который всегда бы жил в воздушной среде. И лишь тонкий слой атмосферы, исчисляемый десятками метров, обычно много меньше ста метров, может считаться переполненным жизнью.
Едва ли можно сомневаться, что и это завоевание воздушной среды есть новое явление в геологической истории планеты: оно стало возможным только с развитием сухопутных организмов, сперва растений (в докембрии?), затем насекомых, летающих позвоночных (в палеозое?), с мезозоя — птиц. С самых древних периодов есть указания на механические переносы микрофлоры и спор. Но лишь с появлением культурного человечества живое вещество сделало крупный шаг к завоеванию всей атмосферы.
Атмосфера не является самостоятельной областью жизни. Ее тонкие нижние слои составляют, с биологической точки зрения, части прилегающих к ним слоев гидросферы и литосферы, причем только в этой последней они входят в сгущения — пленки — жизни (§ 150).
Огромное влияние живого вещества на историю атмосферы связано не с непосредственным его нахождением в газовой среде, но с газовым его обменом — с созданием им новых газов, выделяемых в атмосферу, и с их поглощением из атмосферы (ср. § 42 и 65).
Живое вещество влияет на химию атмосферы, меняя тонкий прилегающий к земле слой газа или газы, растворенные в природных водах.
Конечный грандиозный результат — охват всей газовой оболочки планеты энергией жизни, повсеместное проникновение газообразных продуктов жизни (прежде всего свободного кислорода) — является по существу следствием свойств газообразного вещества, а не свойств живого вещества.
§ 121. Теоретически не менее резкой и ясной, чем верхняя, определяемая озоновым экраном, должна быть и нижняя граница жизни на Земле.
Она должна соответствовать той высокой температуре, при которой организм ни в каком случае не может существовать и развиваться, в зависимости от свойств соединений, из которых он составлен.
Температура в 100° уже, несомненно, представляет такую преграду. Это температура, которая достигается на глубине 3-3,5 км от земной поверхности, может быть местами даже меньшей, около 2,5 км. В среднем можно считать, что глубже 3 км от земной поверхности живые существа в их современном виде существовать не могут.
Ниже уровня моря слой в 100° опускается, так как средняя глубина океана достигает 3,8 км, причем температура дна близка к 0°. Очевидно, в этих точках земной коры предельная для жизни температура не будет встречена в среднем раньше 6,5-7 км, если земной градиент будет одинаков. В действительности повышение температуры идет здесь быстрее, и едва ли возможный для жизни слой превысит 6 км, считая с уровня океана.
Несомненно, предел в 100° есть чисто условная граница. На земной поверхности нам известны организмы, размножающиеся при температурах выше 70-80°, но и здесь организмы, приспособившиеся к длительной жизни при 100°, не встречены.
Таким образом, нижняя граница биосферы в самом крайнем пределе в среднем едва ли превысит 2,5-2,7 км на суше и 5-5,5 км в области океанов.
По-видимому, эта граница должна определяться температурой, а не химическим составом, так как отсутствие свободного кислорода не может служить препятствием для жизни. Свободный кислород на суше кончается много раньше, едва ли в среднем идет на несколько сот метров от земной поверхности: здесь глубже 500 м в среднем не могут жить иные организмы, кроме анаэробных бактерий.
§ 122. Но высокая температура глубоких слоев составляет лишь теоретический предел биосферы, так как другие факторы в своей совокупности влияют гораздо более могущественно на распространение жизни.
К тому же, как указывалось (§ 101), области планеты, лишенные света, захватываются геологически более молодыми организмами, и этот захват далеко не достиг своего предела.
Мы наблюдаем здесь такое же явление, какое указано было и для верхней границы: жизнь медленно приближается к своим глубинным пределам в течение геологического времени, но их еще далеко не достигает. Она достигает геоизотермы в 100° еще менее, чем озонового экрана.
Очевидно, зеленые организмы, требующие света для своего развития, не могут идти за пределы освещенной Солнцем поверхности планеты. Ниже всего могут идти только гетеротрофные организмы и автотрофные бактерии.
Жизнь разно идет вглубь на суше и в океанах. Животная жизнь в океанах глубже всего проникает в своем рассеянии; это проникновение зависит от рельефа дна. По-видимому, все же в заметных своих представителях она не идет глубже 7 км. Еще на глубине 6035 м был найден Hyphalaster parfaiti — морской еж.
Вероятно, плавающие глубоководные формы могут заходить в самые большие океанические глубины[25], но находки со дна глубже 6, 5 км пока неизвестны.
Бактерии в рассеянном состоянии проникают всю водную толщу (найдены глубже 5,5 км), концентрируясь в морской грязи. Их присутствие в морской грязи наибольших глубин не доказано, но чрезвычайно вероятно.
§ 123. Несравненно менее глубоко проникает жизнь суши, прежде всего потому, что нигде здесь не проникает так глубоко в земную кору свободный кислород.
В океане свободный кислород в водном газовом растворе, в котором его процентное содержание по отношению к азоту всегда выше, чем то же отношение этих газов в атмосфере, находится в неразрывной связи с наружной атмосферой. Кислород достигает самых больших глубин океана — до 10 км, и всякое уменьшение его содержания непрерывно, правда с опозданием, пополняется новым его приходом из атмосферы путем растворения и диффузии.
На суше свободный кислород быстро исчезает с глубиной, поглощается организмами или сильно окисляющимися соединениями, главным образом органическими. Исследование вод, приходящих с глубин, близких к 1-2 км, обычно уже не дает в их газах свободного кислорода. Между вадозной водой, содержащей свободный кислород воздуха, и водой фреатической, его лишенной, существует резкий перерыв, до сих пор в точности не выясненный[26].
Свободный кислород проникает обычно всю почву и часть подпочвы. Верхняя граница свободного кислорода в болотистых почвах и болотах ближе к поверхности.
По М. Гассельману, болотистые почвы наших широт уже на глубине 30 см не должны содержать свободного кислорода. В подпочвах свободный кислород идет на глубину нескольких метров, иногда до 10 м и даже больше, если он не встречает на своем пути препятствий в виде твердых пород, которые поглощают свободный кислород. Следы его могут проникнуть в верхние части этих пород, которые всегда соприкасаются с водой из окружающей их среды.
Свободные пустоты и трещины, доступные проникновению воздуха, в исключительных случаях достигают по вертикальному направлению глубины в несколько сот метров. Глубже всего сейчас идут шахты и буровые скважины — создания человеческой культуры, превышающие 2 км по вертикальному направлению, но их значение в масштабе биосферы ничтожно.
К тому же сведенные к уровню океана такие образования в подавляющем большинстве случаев лежат выше этого уровня. Самые большие низины суши по отношению к этому уровню — дно Байкала (богатое жизнью), настоящего пресного моря, превышает километр (более 1050 м).
Очевидно, даже если принять во внимание анаэробную жизнь, нигде на суше живое не достигает тех глубин планеты, которые ему доступны в гидросфере. А между тем даже те глубины лежат далеко от тепловых пределов теоретического поля жизни.
По-видимому, жизнь в глубоких слоях континентов никогда не достигает средней глубины гидросферы (3, 8 км). Правда, новые исследования происхождения нефтей и сероводорода очень понижают нижнюю границу анаэробной жизни. Генезис этих фреатических минералов, по-видимому, является биогенным и происходит при температуре, которая заметно выше, чем на земной поверхности. Но даже если бы встреченные здесь организмы (бактерии) были термофильными организмами, они все же жили бы при температуре, близкой к 70°; это еще очень далеко от геоизотермы в 100°.
§ 124. Мы видим, таким образом, что количество живого преобладает в гидросфере не только благодаря тому, что она по размерам своей поверхности является господствующей частью области жизни, но и потому, что жизнь в ней констатирована на всем ее протяжении, в мощном слое до 10 км в пределе, в среднем в слое в 3, 8 км. Между тем на суше, площадь которой составляет всего 21 % поверхности планеты, область жизни в предельных проявлениях не достигает и 1, 5 км ниже земной поверхности, а в среднем образует слой в немного сотен метров. И в этом тонком слое суши, в котором встречаются живые организмы, жизнь лишь в единичных случаях спускается ниже уровня моря.
В планетном масштабе жизнь на суше оканчивается на уровне океана, в гидросфере она охватывает слой на 3, 8 км ниже.
Жизнь в гидросфере
§ 125. Явления жизни в гидросфере, несмотря на их кажущуюся хаотичность, в действительности представляют неизменные черты, которые выдерживаются в течение всей геологической истории, начиная с археозоя. Мы должны их рассматривать как постоянные, всегда существующие и, в сущности, неизменные черты механизма всей земной коры, не только биосферы. Они во все геологические периоды удерживаются на определенных местах гидросферы, несмотря на вечную изменчивость и жизни, и океана.
Можно характеризовать этот механизм гидросферы одинаковым образом в течение всего геологического времени.
В основу его изучения должна быть положена густота жизни — выделение участков, ею обогащенных. В строении океана мы всегда можем выделить такие участки, которые я буду называть пленками и сгущениями жизни.
Их можно рассматривать как вторичные подразделения той земной оболочки, которую представляет гидросфера, так как они являются сплошными концентрическими ее участками или могут быть таковыми в некоторые периоды ее геологической истории. Пленки и сгущения жизни, очевидно, образуют в океане области наибольшей трансформации солнечной энергии. По отношению к ним и в них должны изучаться все явления жизни океана, если мы хотим их охватить в их проявлении в истории планеты. Только при этом условии можно выяснить геохимический эффект жизни в гидросфере.
Помимо пустоты жизни, важно установить свойства пленок и сгущений жизни:
По отношению к характеру их зеленого живого вещества и его в них распределению. Этим путем выделяются области гидросферы, в которых идет создание главной части свободного кислорода планеты.
По отношению к распределению в них во времени и пространстве создания нового живого вещества гидросферы, т. е. хода в пленках и сгущениях явлений размножения. Очевидно, это явление может дать количественное представление о закономерном изменении хода в них геохимической энергии, ее интенсивности.
По отношению к геохимическим процессам в пленках и сгущениях в связи с историей отдельных химических элементов в земной коре. Этим путем вырисовывается отражение живого вещества океана в геохимии планеты. Мы увидим, что химические функции разных пленок и сгущений неизменны, определенны и различны.
§ 126. Как уже указано (§ 55), вся поверхность океана сплошь охвачена зеленой жизнью (планктоном). В этой области идет выработка свободного кислорода, которым благодаря диффузии и конвекции охвачена вся масса воды океана до самых больших глубин, до самого дна.
Взятые в целом, зеленые автотрофные организмы океана сосредоточены в главной своей массе в верхней его части, не глубже 100 м. Глубже 400 м находятся в общем только гетеротрофные животные и бактерии.
С одной стороны, вся поверхность океана является областью pacmumeльногo, хлорофиллового планктона, с другой — местами выступают на первое место большие растительные организмы: морские водоросли и травы. Они наблюдаются в виде двух резко различных, хотя часто не разделяемых, типов нахождения. Мощное развитие выявляют водоросли и травы в прибрежных и мелких, вообще в морских, областях океана (прибрежные сгущения). Но местами водоросли образуют плавучие массы в открытом океане, одним из наибольших примеров которых является так называемое Саргассово море в Атлантическом океане, площадь которого превышает 100 тыс. км2 (саргассовые сгущения).
Главная масса зеленой жизни выражена в форме микроскопических одноклеточных организмов, сосредоточенных в наибольшей своей части на поверхности океана, в планктоне.
Это должно являться следствием их большой быстроты размножения. Наблюдаемое размножение планктона отвечает величине V, равной 250-275 см/с (эта величина может достигать тысяч сантиметров в секунду), между тем как для прибрежных водорослей эта величина достигает всего 1,5-2,5 см/с (может достигать нескольких десятков сантиметров). Если бы захват поверхности океана, — захват, отвечающий ее лучистой энергии, зависел бы только от скорости v, то планктон должен был бы занимать поверхность моря, раз в сто большую, чем большие водоросли. К порядку этой величины действительно приближается наблюдаемое распределение этих разных аппаратов образования свободного кислорода. Прибрежные водоросли могут встречаться только в более мелких участках океана[27] — в областях морей. Площадь "морей"[28], по Ю. Шокальскому (1917), не превышает 8% поверхности океана, но лишь очень небольшая их часть занята покровом больших водорослей и трав. Очевидно, что 8 % представляют максимальный недосягаемый предел для прибрежных водорослей. Плавающие саргассовые выделения водорослей играют еще меньшую роль. Самое большое их скопление, Саргассово море, отвечает 0, 02 % поверхности океана.
§ 127. Зеленая жизнь, редко видная в океане, далеко не охватывает всего проявления жизни в гидросфере. Для гидросферы чрезвычайно характерно мощное развитие гетеротрофной жизни, совершенно необычное для нас на суше. Едва ли будет ошибочным общее впечатление, которое получается при созерцании жизни океана: по массе захваченной жизнью материи животные, а не растения занимают господствующее положение и кладут печать на все проявления сосредоточенной в нем живой природы.
Но вся эта животная жизнь может существовать только при наличии растительной жизни. Она в своем распределении теснейшим образом связана с распределением зеленой растительной жизни и с последствиями нахождения этой последней.
Тесная связь по условиям питания и дыхания разных представителей жизни как раз и вызывает образование в океане скоплений организмов, характеризующих его пленок и сгущений жизни.
§ 128. Живое вещество составляет в общей массе океана небольшую процентную ее часть. Можно сказать, что обычно морская вода безжизненна. Даже бактерии — как автотрофные (§ 94), так и гетеротрофные, в ней всюду рассеянные, — составляют ничтожные дроби ее веса.
Большие количества живых организмов наблюдаются только в пленках и сгущениях; здесь, и то местами, они могут составлять несколько процентов веса морской воды. Обычно в "живых" пленках и сгущениях весовой процент их содержания больше одного, может быть равен нескольким единицам.
Такие скопления жизни являются областями мощной химической активности.
Жизнь находится в вечном движении, однако в результате бесчисленных ее изменений образуются в гидросфере неподвижные или почти неподвижные места скоплений, статические равновесия. Они так же постоянны и так же характерны для океана, как характерны для него морские течения.
Останавливаясь только на самых общих крупных чертах распределения жизни в океане, можно в нем выделить всего четыре статических скопления жизни: две пленки — планктон и донную — и два сгущения — прибрежное (морское) и саргассовое.
§ 129. Основной, наиболее характерной формой концентрации жизни является верхняя тонкая живая пленка планктона, богатого зеленой жизнью. В общем она может быть рассматриваема как покрывающая всю поверхность океана.
В планктоне преобладает временами зеленый растительный мир, но роль гетеротрофных животных организмов, обусловленных в своем бытии зеленым планктоном, является по своему конечному проявлению в химии планеты, может быть, не меньшей. Фитопланктон всегда одноклеточный, но в зоопланктоне огромную роль играют Metazoa. Metazoa господствует иногда в такой степени, в какой мы нигде этого не видим на суше.
Так, в планктоне океана временами в преобладающем количестве над другими живыми веществами наблюдаются яйца и молоки рыб, ракообразные, черви, морские звезды и т. п. В общем для микроскопического зеленого фитопланктона в среднем, по М. Йорту (Hjort), количество неделимых в кубическом сантиметре колеблется от З до 15; это число для всего микропланктона (в предельных числах) подымается до сотен микроскопических неделимых (А. Аллен, 1919). Число клеток фитопланктона обычно меньше числа неделимых животных (гетеротрофных) организмов. В эти числа не входят ни бактерии, ни наннопланктон. В конце концов, таким образом, надо признать, что в планктонной пленке количество микроскопических неделимых — независимых центров передачи геохимической энергии (§ 48) — должно исчисляться сотнями, может быть тысячами, в 1 см3. По весу это рассеянное живое вещество составляет не меньше 10-4--10-3 % всей массы океанической воды (вероятно, еще значительно больше).
Мощность этого слоя, большею частью находящегося на глубине 20-50 м, не превышает немногих десятков метров. Временами планктон поднимается к водной поверхности или опускается вниз. От этой тонкой пленки планктона количество неделимых и вверх, и особенно вниз быстро уменьшается. Глубже 400 м обычно неделимые планктона являются чрезвычайно рассеянными.
Таким образом, в обшей массе воды океана, средняя мощность которой равна 3,8 км, а наибольшая глубина доходит до 10 км, живые организмы образуют тончайшую пленку, в среднем составляющую n • 10-2 часть всей мощности гидросферы. В химизме океана эта его часть может рассматриваться как активная, а остальная масса воды — как биохимически слабо деятельная.
Ясно, что планктонная пленка является важной частью механизма биосферы, несмотря на свою тонину, подобно тому как важной частью является озоновый экран с ничтожным процентом озона.
Ее площадь равняется сотням миллионов квадратных километров, а вес должен выражаться числами порядка 1015-1016 т.
§ 130. Другое сгущение — донная живая пленка — наблюдается в морской грязи и донном слое воды, ее проникающем и к ней прилежащем.
Этот тонкий слой по размерам и объему подобен планктонной пленке, по весу же должен быть значительно больше ее.
Донная пленка резко распадается на две части. Из них одна — верхняя — пелоген[29] — находится в области свободного кислорода, на ней развивается богатая животная жизнь, в которой большую роль играют Metazoa; здесь мы наблюдаем сложнейшие соотношения между организмами биоценоза, количественная сторона которых только что еще начинает изучаться.
Местами эта фауна достигает огромного развития. Как уже указывалось, этим путем получаются скопления на гектаре живого вещества для Metazoa бентоса одного порядка со скоплениями сухопутных растительных Metaphyta при наилучших их урожаях (§ 58).
Эти богатые жизнью грязи и связанный с ними бентос, несомненно, представляют яркие сгущения живого вещества до глубин, равных 5 км и, может быть, глубже. Только для самых больших глубин есть указания на исчезновение в них животных бентоса глубже 7 км и на значительное уменьшение числа особей с 4-6 км.
Ниже бентоса дна лежит слой грязи дна, составляющий нижнюю часть донной пленки. В нем в огромном количестве преобладают протисты, господствующую роль играют бактерии с их огромной геохимической энергией. Только тонкая, в несколько сантиметров мощностью, верхняя часть ее содержит свободный кислород; ниже лежит мощный слой грязи, переполненный анаэробными бактериями, прорываемый бесчисленными и разнообразными роющими животными.
Здесь все химические реакции идут в резко восстановительной среде. В химии биосферы значение этого тонкого слоя огромно (§ 141). Мощность донной пленки, считая и слои грязи, едва ли превышает 100 м; может быть, однако, она более мошна, например, в тех глубинных частях океана, где развиваются такие организмы, как морские лилии, значение которых в химических процессах Земли, по-видимому, очень велико. К сожалению, можно сейчас только условно определить толщу данной концентрации жизни в 10-60 м в среднем.
§ 131. Планктон и донная пленка охватывают всю гидросферу. Если поверхность планктона, может быть, в общем близка к поверхности океана, т. е. равна 3,6 • 108 км2, то поверхность донной пленки должна значительно превышать ее, так как она следует всей сложности и всем неправильностям рельефа океанического дна.
К этим двум объемлющим гидросферу пленкам присоединяются местами два других сгущения, тесно связанных в своем существовании с богатой свободным кислородом поверхностью планеты, переполненные зеленою жизнью, неотделимые от планктона сгущения жизни — прибрежные и саргассовые.
Прибрежные сгущения иногда охватывают всю толщу воды, вплоть до донной пленки, так как они приноровлены к более мелким участкам гидросферы.
Площадь их в общем ни в коем случае не превышает значительно десятой части площади океана. Мощность их достигает сотен метров, в среднем, вероятно, местами доходит до 500 м, может быть, доходит до километра. Кое-где они соединяются в одну толщу с планктонной и донной пленками.
Прибрежные усиления жизни всегда связаны с более мелкими частями океана, с морями и прибрежными его областями. Они связаны с проникновением световых и тепловых излучений Солнца, с разрушением континентов и приносом с них реками богатых органическими остатками водных растворов и взмученной пыли суши. Общее количество этой жизни неизбежно должно быть меньше той, которая связана с планктонной или донной пленками, так как глубины ниже 1 км немного превышают (если превышают) десятую часть океанической площади.
Частью это леса водорослей и морских трав, частью — скопления моллюсков, постройки кораллов, известковых водорослей, мшанок.
§ 132. Особое место, по-видимому, занимают саргассовые сгущения жизни, мало обращающие на себя внимания и разно объясняемые.
Они отличаются от планктонных сгущений характером фауны и флоры, а от прибрежных — тем, что независимы в своем существовании от разрушения континентов и приносимых реками созданий жизни суши. В отличие от прибрежных сгущений саргассовые являются океаническими сгущениями и наблюдаются на поверхности глубоких частей океана, вне всякой связи с бентосом и донной пленкой.
Долгое время их рассматривали как вторичные образования, приносы ветрами и морскими течениями оторвавшихся частей прибрежных сгущений жизни. Постоянные, неизменные места их нахождения в океане казались следствием распределения ветров и течений, местами — затишья, затонов.
Эти взгляды еще часто встречаются в научной литературе, но они резко противоречат фактам, по крайней мере для наиболее изученного и для наибольшего по размерам Саргассового моря Атлантического океана.
Мы встречаем в нем свою особую фауну и флору, указывающую на происхождение некоторых ее представителей из бентоса прибрежных областей. Очень возможно, что прав Л. Жермен (1924), связывающий ее происхождение с медленным приспособлением этой фауны и флоры к новым условиям, с эволюцией прибрежного живого вещества в связи с медленным опусканием в течение хода геологического времени бывшего на месте Саргассова моря исчезнувшего континента или сети островов.
Можно ли или нельзя применить это объяснение ко всем другим многочисленным сгущениям жизни этого рода, покажет будущее. Но факт остается: нахождение типа сгущений жизни, богатых крупными растительными организмами, переполненных особыми животными формами, отличных от пленок, планктонной и донной, и от прибрежных сгущений. Их точный учет не сделан, но, по-видимому, площадь океана, ими обнимаемая, невелика, несравненно меньше площади прибрежных сгущений.
§ 133. Из этого ясно, что едва ли 2 % общей массы океана заняты сгущениями жизни. Вся остальная его масса содержит жизнь рассеянную.
Несомненно, влияние этих сгущений и пленок жизни сильно сказывается во всей толще океана, сказывается, в частности, и в ее химическом составе, и в ее химических процессах, и в ее газовом режиме, но находящиеся в этой толще в промежуточных слоях организмы не вносят существенных изменений даже в количественный учет явления.
Поэтому во всем нашем дальнейшем учете значения жизни в биосфере мы можем оставить в стороне главную массу воды океана и принимать во внимание только четыре области сгущений: планктонную и донную пленки, прибрежные и саргассовые сгущения.
§ 134. Во всех этих биоценозах размножение идет с перерывами во времени, с определенным ритмом. Ритм размножения отвечает ритму геохимической работы живого вещества. Ритм размножения пленок и сгущений определяет изменения его геохимической работы для всей планеты.
Как уже указывалось, характернейшей формой обеих океанических пленок живого вещества является преобладание в их массе протистов, организмов наиболее мелких, с максимальной быстротой размножения; едва ли когда скорость передачи жизни — величина V — в благоприятных нормальных условиях их существования может быть для них меньше 1000 см/с. В связи с этим это тела с наибольшей интенсивностью газового обмена, всегда пропорционального их поверхности, и проявляющие на гектаре максимальную кинетическую геохимическую энергию (§ 41), т. е. способные в данный срок времени дать наибольшее скопление живого вещества на гектаре и достигающие наиболее быстро предела плодородия.
По-видимому, эти быстро размножающиеся протесты различны в планктонной и донной пленках. В донной преобладают бактерии, переполняющие огромные массы скопляющихся там неразложенных остатков более крупных организмов. В планктонной пленке по массе охваченного ими вещества они отходят на второе место, и на первое место выступают зеленые протесты и Protozoa.
§ 135. Protozoa планктона не являются главной составной частью животной жизни планктона; среди животных преобладают Metazoa— ракообразные, первые стадии — яйца, мальки рыб и т. п.
Темп размножения Metazoa всегда медленнее размножения Protozoa. В иных случаях скорость передачи жизни для них исчисляется в долях сантиметра в секунду. Для океанических рыб и ракообразных планктона величина V не падает, по-видимому, ниже немногих десятков см/с.
Огромное количество Metazoa, нередко в виде больших форм, является характерной чертой строения донной пленки. Их размножение идет временами еще более медленным темпом, чем мелких организмов планктона.
Возможно, что здесь наблюдаются организмы с очень малой скоростью размножения.
Metazoa и Metaphyta характеризуют саргассовые и прибрежные сгущения; здесь протесты всякого рода в конце концов явно занимают второе место, и не они определяют темп геохимических процессов этих биоценозов.
В этих областях, особенно в прибрежных сгущениях, по мере углубления Metazoa начинают преобладать и, в конце концов, являются основными проявлениями жизни. То значение, какое они могут иметь, ясно видно на примере зарослей кораллов, гидроидов, криноидей или мшанок.
§ 136. Ход размножения — правильности его ритма — далеко не охвачен нашей научной мыслью.
Мы знаем только, что размножение не идет беспрерывно и что в окружающем нас мире есть очень определенное, повторяющееся в тесной зависимости от астрономических явлений чередование этих явлений. Оно зависит от солнечного освещения, солнечного нагревания, от количества жизни, характера среды.
Увеличение размножения определенных организмов связано с увеличением движения тех атомов, которые необходимы для их жизни в тем большей степени, чем в большем количестве данные атомы входят в состав организма. Уменьшение размножения вызывает обратный процесс.
Сейчас наиболее ясна нам картина этого явления для планктонной пленки.
§ 137. Для нее изменения размножения всегда ритмические. Они отвечают из года в год повторяющимся колебаниям среды жизни. Они находятся в теснейшей зависимости от ритмических движений океана. Эти движения океана — движения приливов и отливов, температуры, солености, интенсивности испарения, освещения — все космического происхождения.
В связи с этими явлениями в известный момент весенних месяцев по всему морю разносится волна создания органического вещества в виде новых неделимых. Волна эта замирает в летние месяцы. Эта волна выявляется в ежегодном приплоде почти всех высших животных и отражается на составе планктона. "С совершенно той же неизбежностью, с какой приближается весеннее равноденствие и повышается температура, с такой же точностью масса планктонных животных и растений, обитающих в единице объема морской воды, достигает своего годового максимума и затем вновь понижается" (Д. Джонстон, 1911). Картина, нарисованная Джонстоном, касается наших широт, но она по существу правильна для всего океана и меняется лишь в формах своего выражения.
Планктон — это биоценоз. Все организмы, из которых он состоит, тесно связаны в своем существовании одни с другими. Первенство часто наблюдается за ракообразными (Copepoda), которые питаются диатомеями, иногда и за диатомеями, как, например, в северной части Атлантического океана.
Правильный ритм наблюдается из года в год в северовосточных морях Европы, которые хорошо изучены. В период с февраля до июня (для большинства рыб в марте — апреле) планктон переполнен рыбьей икрой. Весной, после марта, в нем кишат кремнистые диатомовые — Biddulphia, Coscinodiscus, и позднее — некоторые виды динофлагеллат. К лету количество диатомовых и пиридиней уменьшается, и на смену им приходят Copepoda и другие представители зоопланктона.
Осенью, в сентябре-октябре, наблюдается новый расцвет фитопланктона — диатомовых и пиридиней, но менее интенсивный.
Декабрь и особенно январь характерны обеднением жизни, замедлением размножения.
В наших широтах в феврале — июне, для большинства рыб — в марте — апреле планктон переполняется яйцами рыб. Весной в Северном море в нем кишат кремнистые диатомовые — Biddulphia, Coscinodiscus, летом — Rhizosolenia, осенью — другие диатомовые и пиридиней. Первые два месяца года, январь и февраль, характерны обеднением жизни — замедлением размножения.
Смена темпа размножения — характерная и постоянная, различная для каждого организма — повторяется для каждого года с неизменной точностью, как повторяются все явления, связанные с космическими причинами.
Геохимические циклы сгущений жизни и живых пленок гидросферы
§ 138. Геохимически ход размножения выражается в ритмичности земных химических процессов. Каждая живая пленка и каждое сгущение жизни есть область создания определенных химических продуктов.
Несомненно, чрезвычайно характерно для всего живого то, что химические элементы, раз попавшие в его циклы, почти из них не выходят, в них остаются вечно. Все же небольшая часть их всегда при этом выделяется в виде новых вадозных минералов, и именно она представляется нам в виде созданий химии моря. Темп размножения отражается на их выделении.
Живая планктонная пленка есть главная область выделения самородного кислорода, создаваемого жизнью зеленых организмов; в ней сосредоточиваются соединения азота, значение которых огромно в земной химии этого элемента; она является центром создания органических соединений океанической воды. Несколько раз в течение года здесь собирается кальций в виде карбонатов и кремний в виде опалов, и в конце концов они, падая на дно, накопляются в донной пленке. Мы видим результаты этой работы, геологически накопленной в мощных отложениях осадочных пород, в части материала меловых пород (водоросли наннопланктона, корненожки) и кремнистых отложений (диатомовые и радиолярии).
§ 139. Близки к живой планктонной пленке по своим химическим продуктам саргасовые и частью прибрежные сгущения. Они также характерны для создания свободного кислорода, кислородных соединений азота, кислородных и азотных соединений углерода, соединений кальция.
По-видимому, в этих местах нередко наблюдается концентрация магния, входящего в меньшей, чем кальций, но все же в яркой и заметной степени в состав твердых частей организмов и непосредственно переходящего этим путем в состав вадозных минералов.
Гораздо менее, чем планктонная пленка, важны эти скопления жизни в истории кремния, хотя и здесь его круговорот через живое вещество очень интенсивен.
§ 140. В истории всех химических элементов в областях скоплений жизни имеет значение двоякого рода процесс: во-первых, прохождение данных химических элементов через живое вещество и, во-вторых, выделение их — уход из живого вещества — в форме вадозных соединений.
В общем выделение этих тел в течение короткого, например годового, цикла жизни не заметно, так как количество выходящих из жизненного круговорота в этот промежуток времени элементов ничтожно. Оно становится заметным лишь в долгие промежутки времени, даже не исторические, но геологические. Этим путем создаются в земной коре массы косного твердого вещества, во множество раз превышающие вес живого вещества, в данную минуту существующего на планете.
В этом отношении наблюдается большое различие между живой планктонной пленкой и прибрежными сгущениями жизни[30]. В этих последних выходят из цикла жизни значительно большие количества химических элементов, чем в планктонной пленке, и благодаря этому они оставляют больший след в строении земной коры.
Эти явления наблюдаются особенно интенсивно в нижних слоях прибрежных сгущений, около донной живой пленки, и в их частях, прилегающих к суше или внедряющихся в нее. В этом последнем случае характерно выделение твердых органических соединений углерода и азота и испарение газообразного сероводорода, связанное с уходом серы из данного участка земной коры. Этим биохимическим путем исчезают сульфаты из образующихся по краям морских бассейнов соляных озер и заливов.
§ 141. Для прибрежных сгущений нет той резкой границы между химическими реакциями дна и поверхности моря, которая так ярка в открытом океане, где обе эти живые, химически активные пленки отделены друг от друга огромной толщей, в несколько километров мощностью, химически инертной воды.
В прибрежных сгущениях границы между пленками гидросферы вообще сближаются, а в мелких морях и вблизи берегов исчезают.
В этом последнем случае сливается действие всех скоплений жизни и наблюдаются области особенно интенсивной биохимической работы разного типа.
Донная пленка есть всегда область интенсивного проявления химической работы жизни. На первое место выступают концентрации организмов, обладающих наибольшей геохимической энергией, — бактерий. Здесь вместе с тем резко меняются химические условия обычной среды, так как благодаря нахождению больших количеств жадно поглощающих свободный кислород соединений, большею частью продуктов жизни, и медленной замене свободного кислорода, идущего в поверхности океана, в донной пленке господствует (в морской грязи) восстановительная среда. Здесь царство анаэробных бактерий. Только тонкий слой ее, в несколько миллиметров мощностью, пелоген, представляет область интенсивных биохимических окислительных процессов, дающих начало нитратам и сульфатам. Он отделяет верхнее население донных сгущений жизни, подобное по химическим своим проявлениям прибрежным сгущениям, от неизвестной в других местах в биосфере восстановительной среды донной грязи.
В действительности здесь благодаря непрерывному перемешиванию грязи роющими животными постоянно нарушается равновесие между окислительной и восстановительной средой: биохимические и химические реакции идут в обе стороны, усиливая создание нестойких, богатых свободной химической энергией тел.
Вместе с тем характерной особенностью донных сгущений является постоянное отложение в них гниющих остатков погибших организмов, падающих неустанно на дно с планктонной, саргассовой, прибрежных пленок, с промежуточных слоев морей и океана.
Эти остатки организмов переполнены бактериями, главным образом анаэробными, и еще более увеличивают восстановительный химический характер среды этих концентраций жизни.
§ 142. Донные концентрации жизни в связи с характером их живой материи играют совершенно особую роль в биосфере и имеют огромное значение в создании ее косной материи. Ибо главные продукты их биохимических процессов, здесь образующиеся, являются в анаэробных условиях твердыми телами или телами коллоидальными, с ходом времени в значительной мере переходящими в твердые. В этих областях существуют все условия для их сохранения, так как здесь организмы по отмирании и их остатки очень быстро выходят из обычных биохимических условий тления и гниения, из условий того процесса, который в среде, содержащей кислород, в конце концов переводит значительную часть их вещества в газообразные продукты; они не окисляются (не "сгорают").
Уже на небольшой глубине в морской грязи прекращается не только аэробная, но и анаэробная жизнь. По мере падения сверху остатков жизни и взмученных частей костной материи нижние слои морской грязи становятся безжизненными, и образованные жизнью химические тела не успевают перейти в газообразные продукты или войти в новые живые вещества. Живой слой грязи никогда не превышает немногих метров, между тем как он непрерывно растет с поверхности. Снизу он неустанно замирает.
"Исчезание" остатков организмов, переход их в газы, есть всегда процесс биохимический. В слоях, лишенных жизни, остатки организмов медленно меняются, переходят в течение геологического времени в вадозные твердые и коллоидные минералы. Продукты такого происхождения окружают нас всюду и, измененные химическими процессами с ходом времени, в форме осадочных пород составляют поверхность планеты в несколько километров средней мощности. Они постепенно переходят в метаморфические породы, еще больше изменяются и, попадая в области высокой температуры в магматическую оболочку Земли, входят в состав массивных, гипабиссальных пород — фреатических и ювенильных тел, вновь вступающих в биосферу с ходом времени под влиянием энергии, проявлением которой является высокая температура этих слоев (§ 77, 78). Они вносят в эти области планеты свободную, превращенную жизнью в химическую энергию, которую зеленый организм получил некогда в биосфере в форме космических излучений, солнечных лучей.
§ 143. Поэтому живые донные пленки в связи с прилегающими к ним прибрежными скоплениями жизни заслуживают особого внимания при учете химической работы живого вещества на нашей планете.
Они образуют мощные, химически активные участки земной коры, действующие медленно, но в общем одинаково в течение всего геологического времени.
Распределение моря и суши на земной поверхности дает понятие об их перемещении на ней во времени и месте.
Геохимическое значение донных, живых пленок велико как для их окислительной верхней части (главным образом бентоса), так и для их нижних восстановительных слоев. Оно еще более увеличивается в тех частях, где эти пленки сливаются с прибрежными сгущениями жизни и где к обычным для них продуктам прибавляются (выше 400 м, § 55) свободный кислород и биохимические продукты, связанные с ним и работой зеленой жизни.
В равной своей части окислительная среда донной пленки резко сказывается в истории многих химических элементов, не только кислорода, азота или углерода.
Прежде всего она совершенно меняет историю кальция на земле. Очень характерно, что кальций из всех металлов является господствующим в живом веществе. В валовом составе живого вещества он превышает 1 % по весу, а в очень многих организмах, главным образом морских, его количество превышает 10 %, и даже 20 %. Этим путем, деятельностью живого вещества, кальций в биосфере отделяется от натрия, магния, калия, железа, с которыми он связан в косной материи земной коры в общих молекулах и с которыми он сравним по своей распространенности. Кальций жизненными процессами организмов переводится в карбонаты, сложные фосфаты, значительно реже — в кальциевые оксалаты. Кальций уже в организмах приводится в форму карбонатов и сложных фосфатов, в виде несколько измененных форм он сохраняется и в вадозных минералах биохимического происхождения.
Океан, главным образом его области донных и прибрежных сгущений жизни, является тем механизмом, который создает кальциевые покровы планеты, отсутствующие в ювенильных силикатных массах ее коры и глубоких фреатических областях.
Ежегодно в океане откладывается не меньше 6 • 1014 г кальция в виде карбонатов. Не меньше 1018-1019 г кальция находится в непрерывном круговороте в живом веществе; это составляет уже заметную часть всего кальция земной коры (около 7-1023 г) и очень значительную часть кальция биосферы. Кальций не только концентрируется организмами бентоса, обладающими значительной скоростью передачи жизни: моллюсками, криноидеями, морскими звездами, водорослями, кораллами, гидроидами и другими, но и собирается протистами морской грязи, еще больше — планктона, в том числе наннопланктона, и бактериями, обладающими максимальной для живого вещества кинетической геохимической энергией.
Путем выделения соединений кальция, образующих целые горы, участки в миллионы кубических километров объемом, солнечная энергия жизнедеятельностью организмов определяет химию земной коры не меньше, чем разложением углекислоты и воды и созданием этим путем органических соединений и свободного кислорода.
Кальций выделяется главным образом в виде карбонатов, частью в виде фосфатов. Он приносится в океан реками с суши, где главная его часть тоже прошла (в другой форме) через наземную жизнь (§ 156).
§ 144. Помимо кальция, эти области скоплений жизни аналогичным образом влияют на историю других распространенных в земной коре элементов, несомненно: кремния, алюминия, железа, марганца, магния, фосфора.
Многое еще нам неясно в этих сложных природных явлениях, но общий результат — огромное значение этой живой пленки в геохимической истории указанных элементов — является несомненным.
В истории кремния влияние донной пленки сказывается в образовании отложений остатков кремневых организмов, частью планктонных, частью донных: радиолярий, диатомовых, морских губок. В результате образуются самые большие нам известные скопления свободного кремнезема, в сотни тысяч кубических километров объемом. Этот свободный кремнезем, инертный и малоизменчивый в биосфере, в метаморфической и магматической оболочках Земли благодаря своему химическому характеру свободного кислотного ангидрида является интенсивным химическим фактором, носителем свободной химической энергии.
Едва ли можно сомневаться и в другой биохимической реакции, здесь идущей, общее значение которой мы сейчас еще не можем уяснить. Это разложение диатомовыми и, может быть, бактериями алюмосиликатов каолинового строения, ведущее, с одной стороны, к образованию указанных выше отложений свободного кремнезема, а с другой — к выделению гидратов окиси алюминия. Этот процесс идет, по-видимому, не только в грязи, но, судя по опытам Ж. Мёррея и Ф. Ирвина, и во взмученной глинистой мути морской воды, которая сама является результатом биохимических процессов выветривания косной материи суши.
§ 145. Вероятно, не меньше значение этих областей и связанных с ними биохимических реакций в истории железа и марганца. Несомненен результат этих реакций: образование в земной коре самых больших скоплений этих элементов, нам в земной коре известных. Таковы молодые третичные железные руды Керчи, мезозойские — Эльзас-Лотарингии. Это доказано новыми работами русских ученых (Б. В. Перфильева, В. С. Буткевича, Б. Л. Исаченко, 1926-1927). Эти бурые железняки и богатые железом хлориты, по-видимому, несомненно, выделились в теснейшей связи с остатками организмов, но механизм процесса нам не ясен. Вероятно, мы имеем здесь дело с бактериальным процессом, по крайней мере отчасти.
На всем протяжении геологической истории, начиная с архейской эры, наблюдается повторение тех же процессов. Так образовались, например, величайшие древнейшие скопления железа в железных рудах Миннесоты.
Тот же характер имеют многочисленные руды марганца и его величайшие скопления в Закавказье, в Кутаисской губернии. Есть переходы между железными и марганцовыми рудами, и идут и сейчас на значительных протяжениях морского дна аналогичные их выделения, биохимическое, бактериальное происхождение которых чрезвычайно вероятно, если не может считаться доказанным.
§ 146. Тот же самый характер носят выделения соединений фосфора, выпадающие и ныне на морском дне при условиях, для нас не вполне ясных.
Связь их с явлениями жизни, с биохимическими процессами, несомненна, но механизм процесса точно не известен.
Несомненно, фосфор таких фосфоритовых залежей, главным образом конкреционных образований, известных на всем протяжении геологической истории, по крайней мере с кембрия, - органического происхождения. Несомненно, везде он здесь связан с морскими донными сгущениями жизни. В них же в несравненно меньших размерах фосфоритные конкреции образуются и сейчас кое-где (у Южной Африки, например) на морском дне. Несомненно, часть этого фосфора уже была концентрирована в виде фосфатов организмами при их жизни в богатых им частях тела.
Обычно, однако, фосфор организмов, столь необходимый для живого, не выходит из жизненного круговорота. Условия его выхода из цикла жизни нам не ясны, причем все указывает на то, что наряду с фосфором скелетов (твердых соединений кальция) в конкреции переходит и фосфор коллоидальных органических соединений, и фосфаты растворов организма.
Этот выход совершается при особых условиях гибели богатых фосфорсодержащими скелетами организмов, делающих невозможными обычные процессы изменения их тел и создающих благоприятную среду для жизнедеятельности особых бактерий.
Несомненен, во всяком случае, факт биогенного происхождения этих образований, их постоянной теснейшей связи с живой донной пленкой и постоянного повторения аналогичных явлений в течение всего геологического времени.
Этим путем собираются самые большие концентрации фосфора, нам известные, вроде тех, какие проявляют нам третичные фосфориты Северной Африки или юго-восточных штатов Северной Америки.
§ 147. Несомненно, наши знания о химической работе живого вещества этой пленки все еще неполны. Ясно, что ее роль значительна в истории магния, в истории бария и, должно быть, других химических элементов, как, например, ванадия, стронция или урана. Здесь мы находимся перед большой, еще мало затронутой точным знанием областью явлений.
Еще больше неясностей и загадок представляет другая область донной пленки — лишенная кислорода нижняя ее часть. Это область анаэробной бактериальной жизни и физико-химических явлений, связанных с проникающими ее органическими соединениями. Эти соединения были созданы в другой химической среде особыми, чуждыми в обычной жизненной среде, богатой кислородом, живыми организмами.
Хотя процессы, здесь происходящие, в значительной степени остаются для нас темными и по отношению к целому ряду вопросов, с ними связанных, мы вынуждены делать гипотезы, мы не можем оставлять их без внимания и должны их учитывать при оценке роли живого в механизме земной коры.
Ибо два эмпирических обобщения несомненны: 1) значение этих грязевых отложении, богатых остатками организмов, в истории серы, железа, меди, свинца, серебра, никеля, ванадия, по-видимому кобальта, может быть других, более редких металлов и 2) повторяемость этого явления в разные геологические эпохи, указывающая на связь его с определенными физико-географическими условиями замирания морских бассейнов и их биологическим характером.
§ 148. Для серы несомненно непосредственное участие в ее выделении особых живых организмов — бактерий, выделяющих сероводород, разлагающих сульфаты или сложные, содержащие серу органические соединения. Выделяемый при этом сероводород вступает в многочисленные химические реакции и дает сернистые металлы. Это биохимическое выделение сероводорода — характерное явление данной области и наблюдается непрерывно всюду в морской грязи, причем в наружных частях ее он быстро биохимически окисляется вновь в сульфаты.
Биохимический характер выделения соединений других металлов неясен. Многое указывает, что железо, медь, ванадий, а может быть, и другие находящиеся здесь и соединяющиеся с серой металлы получаются разрушением организмов, ими богатых. С другой стороны, очень вероятно, что органические вещества морской грязи обладают способностью задерживать металлы, осаждать их из слабых растворов, причем сами металлы могут не иметь никакого прямого отношения к живому веществу.
Но и в том и в другом случае этого выделения металлов не было бы, если бы не было остатков жизни, т. е. если бы морская грязь не являлась в своей органической составной части продуктом живого вещества.
Мы наблюдаем сейчас такие процессы в большом масштабе в Черном море (выпадение сернистого железа), в малом — во множестве мест. Их широкое развитие в другие геологические периоды может быть прослежено во множестве случаев. В пермский и триасовый периоды в области Евразии были выделены этим путем из растворов или из живого вещества огромные количества меди.
§ 149. Из всего вышеизложенного ясно, что во все геологические периоды существовало то же самое распределение жизни в гидросфере и сказывалось то же самое неизменное ее проявление в химии планеты. Те же самые живые пленки, планктонная и донная, и те же морские сгущения жизни (по крайней мере прибрежное) существовали во все геологические периоды, являлись частью одного и того же непрерывно существовавшего все эти сотни миллионов лет биохимического аппарата.
Все время происходившие перемещения суши и моря вызывали смещения на поверхности планеты одних и тех же химически активных областей, образованных живым веществом, — живых пленок и сгущений гидросферы. Они этим путем переходили, как пятна лика планеты, с одного места на другое.
Нигде мы не видим при изучении древних геологических отложений указаний на изменение такого строения гидросферы или его химических проявлений.
А между тем морфологически за этот ход времени живой мир изменился до неузнаваемости. Очевидно, это его изменение заметно не отражаюсь ни на количестве живого вещества, ни на его среднем валовом составе: морфологическое изменение шло в известных рамках, не нарушавших проявления жизни в химической картине планеты.
И это несмотря на то, что морфологические изменения, несомненно, были связаны с большими — в масштабе организма — нарушениями химического характера как по отношению к индивидууму, так и по отношению к виду. Создавались новые химические соединения, исчезали старые (с вымиранием видов), но это не отражалось заметно на геохимическом эффекте жизни при ее изучении как планетного явления. В этом масштабе незаметно даже такое, несомненно огромное, химическое изменение в истории кальция, фосфора, может быть магния, как создание скелета Metazoa.
Очень вероятно, что в допалеозойское время организмы были лишены этого скелета; эта гипотеза, которая многими считается установленным эмпирическим обобщением, действительно, многое объясняет в палеонтологической истории органического мира.
Для того чтобы это явление не отразилось на геохимической истории фосфора, кальция, магния, необходимо допустить, что до создания скелетных Metazoa выделение схожих соединений этих элементов шло в том же масштабе жизнедеятельностью протистов, между прочим бактерий; такое выделение длится и до сих пор, но раньше оно должно было играть еще большую и исключительную роль.
Если эти два явления, которые с точки зрения геологического времени различны, вызывают биогенную миграцию одних и тех же атомов, то морфологические изменения, хотя бы и очень значительные, могут не оказать нового влияния на геохимическую историю этих элементов. Все указывает на то, что, действительно, такое положение вещей имело место в геологической истории Земли.
Живое вещество суши
§ 150. Совершенно иную картину, чем гидросфера, представляет суша. По существу, мы имеем здесь одну живую пленку, которую представляют почва и населяющая ее фауна и флора.
Однако среди этой единой, переполненной жизнью пленки необходимо выделить на земной поверхности еще водные сгущения живого вещества — водные вместилища, которые и с биохимической, и даже с чисто биологической точки зрения резко отличны от суши; геологический же их эффект явно совершенно иной.
Жизнь покрывает сушу почти сплошной пленкой; мы находим ее проявление и на сплошных ледниках и снегах, в пустынях, на высотах гор. Едва ли можно говорить о безжизненности на поверхности суши, можно говорить только о временной безжизненности, о разрежении жизни. В той или иной форме жизнь проявляется всюду. Разрежения жизни, пространства суши, ею бедные, пустыни, ледники и снежные поля, снежные горы в общей сложности едва ли составляют 10 % ее поверхности. Вся остальная поверхность суши является жизненной пленкой.
§ 151. Мощность этой пленки очень незначительна; она для сплошных лесных пространств не подымается выше нескольких десятков метров над земной поверхностью; в полях и степях она подымается на несколько метров.
Леса в экваториальных областях, где деревья достигают наибольшей высоты, образуют пленку жизни, мощность которой 40 - 50 м. Самые высокие деревья, в 100 м и больше, теряются в общем облике растительности и не могут приниматься во внимание отдельно от общего ее уровня.
Жизнь проникает в глубину почвы и подпочвы только на несколько метров.
Аэробная жизнь прекращается на глубине 1-5 м, анаэробная идет в общем на несколько десятков метров.
Вглубь она нигде не идет глубже 1 - 5 м, глубже слоя почвы и верхней подпочвы.
В общем на поверхности суши чередуются участки живой пленки в десятки метров (области лесов) и в немногие метры мощностью (травяной покров).
Деятельность культурного человечества внесла в структуру этой пленки такие изменения, каких нигде не наблюдается в гидросфере.
Эти изменения — новое явление в геологической истории планеты, еще не учтенное в своем геохимическом эффекте. Одним из главных его проявлений является чрезвычайное уменьшение лесных пространств, т. е. более мощных частей пленки.
§ 152. Мы сами входим в состав этой пленки, и нам чрезвычайно ясно ее изменение — в ее составе и в ее проявлении — в течение годового солнечного цикла.
Здесь преобладают по количеству захваченного жизнью вещества зеленые растения, и среди них травы и деревья, в животном населении — насекомые, клещи, может быть пауки. В общем при поразительном многообразии жизни океана живое вещество второго рода — звери, гетеротрофные организмы — играет подчиненную роль. Значительные части суши, тропические леса, как гилея Африки, или северная тайга, являются почти пустынями в отношении млекопитающих, птиц и других позвоночных. Членистоногие, которые для нас менее заметны, составляют очень рассеянное животное население этих мощных растительных сообществ. То, что медленно выяснилось в планктоне, — сезонные усиления и ослабления размножения — здесь общеизвестно. Жизнь замирает в наших широтах зимою, возбуждается и развивается весною. Тот же процесс идет всюду в разных формах, в большей или меньшей яркости от полюсов и до тропиков.
Это не только явление, резко выраженное для поверхностной зеленой растительности и связанного с нею животного мира, для которого столь же характерны периодически сезонные периоды размножения. То же самое наблюдается и для почв. К сожалению, здесь вопрос мало изучен, а между тем, как мы увидим, значение почв в истории планеты гораздо большее, чем это обычно кажется.
В общем, для всех пленок— и гидросферы, и суши — существуют регулируемые Солнцем усиления и ослабления размножения — хода геохимической энергии живого вещества, "вихрей" химических элементов, им захватываемых. Геохимические процессы пульсируют, закономерно замирают и усиливаются.
Числовые законности, здесь явно существующие, нам совершенно не известны.
§ 153. Геохимические явления, связанные с живой пленкой суши, чрезвычайно характерны и резко отличают ее от морских пленок.
В живой пленке суши никогда процессы выхода химических элементов из жизненного цикла не приводят к таким скоплениям вадозных минералов, какие мы наблюдаем в морских отложениях, где ежегодно отлагаются миллионы тонн карбонатов кальция и магния (известняки и доломитизованные известняки), кремнезема (опалы и т. п.), гидратов окиси железа (бурые железняки), водных окислов марганца (пиролюзиты и псиломеланы), сложных фосфатов кальция (фосфориты) и т. п. (§ 143). Все эти образования в огромном большинстве морского происхождения, во всяком случае водного. В живом веществе суши химические элементы не выходят в еще более подавляющей своей части (§ 144) из жизненного цикла, чем в гидросфере. После умирания организма или отмирания его частей вещество или немедленно, без перерыва, захватывается новыми организмами, или же уходит в атмосферу в виде газообразных продуктов. Эти биогенные газы — О2, СО2, Н2О, N2, NH3... — вновь сейчас же захватываются в живое вещество его газовым обменом.
Мы имеем здесь очень совершенное динамическое равновесие, которое приводит к тому, что огромная геохимическая работа живого вещества суши оставляет после десятков миллионов лет своего существования ничтожные следы в твердых телах, строящих земную кору. Химические элементы живого вещества суши находятся в непрерывном движении в форме газов и живых организмов.
§ 154. Из этого динамического равновесия постоянно выходит ничтожная по весовому процентному содержанию, но выражающаяся, надо думать, ежегодно во многих миллионах тонн масса твердых остатков жизненного цикла суши в виде мельчайшей пыли "органического вещества" — соединений, главным образом углерода, кислорода, водорода, азота, в меньшей степени фосфора, серы, железа, кремния и т. п., которые проникают всю биосферу и в некоторой, не определимой пока части уходят из жизненного цикла, иногда надолго, на миллионы лет.
Эти органические остатки проникают всю материю биосферы, живую и косную, собираются во всех вадозных минералах, во всех поверхностных водах и реками, и атмосферными осадками сносятся в море. Их влияние в ходе химических реакций биосферы огромно и аналогично тому влиянию органических растворенных веществ природных вод, о котором упоминалось выше (§ 93). Органические остатки жизни полны — в термодинамическом поле биосферы — свободной химической энергией; по своим малым размерам они легко дают водные дисперсные системы — коллоидальные растворы.
§ 155. На суше органические остатки концентрируются в почвах, которые, однако, никак нельзя рассматривать как косную материю. В почвах живое вещество достигает нескольких десятков весовых процентов; это область наивысшей геохимической энергии живого вещества, важнейшая по своим геохимическим последствиям лаборатория идущих в ней химических и биохимических процессов.
Почва по своему значению аналогична грязевой части донной пленки (§ 141), но в отличие от нее в почве преобладает окислительная среда. Вместо нескольких миллиметров ее толщины в донной грязи мощность ее здесь может превышать метр. Роющие животные и здесь являются могучим фактором ее уравнивания.
Почва является областью энергичного выветривания в среде, богатой кислородом и углекислотой, которые отчасти создаются живым веществом, в ней находящимся.
Но в отличие от наземного биохимизма суши химические создания почвы не входят целиком в новые жизненные вихри элементов, выражающие, по образному выражению Ж. Кювье, сущность живого, не уходят в газовые формы вещества. Они выходят на некоторое время из цикла жизни и отражаются в другом огромном явлении планеты — в составе природной воды, в соленой воде океана.
Почва жива, пока она влажная. Ее процессы идут в водной среде — в растворах или дисперсных системах.
И этим обусловливается иной характер проявления живого вещества почвы в химии планеты по сравнению с живыми организмами, на ней находящимися. В их проявлении решающую роль играет механизм воды на суше.
§ 156. Вода на суше находится в постоянном круговороте. Этот круговорот совершается энергией Солнца, его тепловыми лучами. Этим путем проявляется космическая энергия на нашей планете в не меньшей степени, чем она выявляется в геохимической работе жизни. Деятельность воды в механизме всей земной коры совершенно решающая; особенно ярка она в биосфере. Она не только составляет в среднем много более двух третей по весу живой материи (§ 109), ее присутствие является необходимым условием размножения живых организмов, проявления их геохимической энергии, условием их выявления в механизме планеты.
В биосфере не только вода неотделима от жизни, но и жизнь неотделима от воды. Трудно учесть, где кончается влияние одного тела — воды — и начинается влияние другого — разнородного живого вещества.
Почва непосредственно захватывается круговоротом воды, она ею обтекается благодаря осадкам. Всюду идет непрерывный процесс ее выщелачивания, стекания по ней поверхностных вод. Они непрерывно растворяют и уносят во взмученном состоянии богатые органическими остатками ее части. Состав пресной воды, таким путем связанной с почвой, непосредственно определяется химизмом почвы, является проявлением ее биохимизма. Почва резко определяет таким путем в самой основной его части состав речной воды, куда в конце концов собираются все эти поверхностные воды.
Реки несут свои воды в море, и состав морской воды в его солевой части в конце концов и главным образом обусловлен ими, т. е. обусловлен химической работой почвы — ее столь еще мало нам известным биоценозом.
На нем отражается окислительный характер среды почвы; он выражается в конечных растворимых продуктах ее живого вещества. В водах рек преобладают сульфаты и карбонаты, натрий соединен с хлором. В тесной связи с биохимизмом этих элементов в почве характер их нахождений в речной воде резко отличается от твердых их выделений в лишенных жизни земных оболочках.
§ 157. В связи с циркуляцией воды на суше наблюдаются и другие закономерные химические проявления населяющего ее живого вещества.
Жизнь, населяющая водные пространства, резко отличается по своим эффектам от жизни наземной.
Здесь мы наблюдаем во многом явления, аналогичные пленкам и сгущениям гидросферы, здесь в меньшем масштабе можно отличить и планктонную, и донную пленку, и сгущения, отвечающие прибрежным. Здесь, помимо окислительной среды, имеют место и химические реакции в среде восстановительной. Здесь, наконец, увеличивается выход химических элементов из жизненного круговорота и образование твердых продуктов, входящих позже в состав осадочных пород земной коры. И здесь, по-видимому, этот процесс выделения твердых продуктов связан с явлениями восстановительной среды, быстрого исчезновения кислорода, а затем и прекращения не только аэробной, но и анаэробной жизни простейших.
При таком общем сходстве геохимический эффект этого явления суши существенно отличен от наблюдаемого в гидросфере.
§ 158. Это связано с резким отличием от гидросферы водных вместилищ суши. Химическим основным различием является пресный характер главной массы воды, физическим — мелкость водовместилищ. Главная масса воды суши в области биосферы сосредоточена в лужах, озерах и болотах, а не в реках. Благодаря мелкости бассейнов они представляют одно пресноводное сгущение жизни.
Только в пресных морях, как, например, Байкальском, мы наблюдаем раздельными живые пленки, подобно гидросфере. Но эти глубокие озера являются исключением.
В связи с таким характером озер их биогеохимическая роль резко отлична от водных вместилищ океана, и прежде всего это выражается в том, что продукты выделения в пресных водных бассейнах иные. На первое место выступают соединения углерода. Хотя и кремнезем, и карбонаты кальция, и бурые окислы железа образуются в донных пленках и связанных с ними сгущениях водоемов суши, все же они отходят на второй план по сравнению с выделением углеродистых тел. Здесь— и только здесь— идет в заметной степени выделение стойких вадозных углеродо-водо-родо-азотистых тел, бедных кислородом: всех углей и битумов. Это стойкие формы вадозных минералов, в которые переходят, выходя из биосферы, органические соединения углерода. В конечном их изменении в метаморфических областях углерод выделяется в свободной форме графита.
Причина образования стойких углеродо-азотистых тел только в пресных водовместилищах нам не ясна, но она выдерживается неизменно в течение всего геологического времени. В соленой воде моря мы сколько-нибудь их значительных скоплений не знаем. Является ли это следствием химического характера среды или строения живой природы, сказать нельзя, но и в том и в другом случае явление это связано с характером жизни.
Скопления этих органических веществ являются очагами огромной потенциальной энергии, "погребенными лучами Солнца", по образному выражению Р. Майера, значение которых так велико в истории человека, но далеко не безразлично и в природе. Понятие о масштабе проявлений этого процесса можем получить, учтя количество известного нам каменного угля.
Возможно, что такие каменноугольные бассейны образовывались в соседстве с морями.
Мне кажется почти несомненным, что в этил же пресноводных сгущениях суши надо искать и главные места выделения жидких углеводородов — нефти, зависимость которых от скоплений жизни биосферы может считаться вполне точно установленной для главных типов нефтяных месторождений.
Связь живых плёнок гидросферы и суши
§ 159. Из предыдущего ясно, что все живое представляет неразрывное целое, закономерно связанное не только между собою, но и с окружающей косной средой биосферы.
Но наши современные знания недостаточны для получения яркой единой картины. Это дело будущего, которое объяснит и лежащие в ее основе числовые соотношения.
Мы же только улавливаем самые общие контуры явления. Главнейший факт — это существование биосферы в течение всех геологических периодов, с самых древних их проявлений, с архейской эры.
Эта биосфера в основных своих чертах представляла один и тот же химический аппарат.
Мы видим, что неизменно в течение всего геологического времени под влиянием неуклонного тока лучистой солнечной энергии в биосфере действовал этот химический аппарат, созданный и поддерживаемый в своей деятельности живым веществом.
Этот аппарат состоит из определенных концентраций жизни, которые занимают, вечно меняясь, одни и те же места в земных оболочках, отвечающих биосфере. Эти концентрации жизни — живые пленки и сгущения жизни — являются как бы более частными делениями земных оболочек. В общем, их концентрический характер выдерживается, хотя они никогда не дают сплошного, непрерывного покрова поверхности планеты.
Они являются областями планеты химически активными; здесь сосредоточены разнообразнейшие статические — установившиеся — системы динамических равновесии земных химических элементов. Это области, где обтекающая весь земной шар лучистая энергия Солнца принимает форму земной свободной химической энергии, причем она превращается в земную энергию в различной мере для разных химических элементов.
Существование этих областей планеты связано, с одной стороны, с той энергией, какую она получает от Солнца, а с другой — со свойствами того живого вещества, которое является аккумулятором и трансформатором этой энергии в земную химическую. Свойства и расположение химических элементов играют при этом большую роль.
§ 160. Все эти сгущения жизни теснейшим образом между собою связаны. Одно не может существовать без другого. Эта связь между разными живыми пленками и сгущениями и неизменный их характер есть извечная черта механизма земной коры, проявлявшаяся в ней в течение всего геологического времени.
Как не было ни одного геологического периода, когда бы не было суши, так не было и такого, когда бы она одна существовала. Только в отвлеченной фантазии ученых наша планета являлась в виде сфероида, покрытого океаном, в форме "Панталассы" Э. Зюсса или в форме сухой, уравненной, мертвой пенеплены, как ее рисовал давно И. Кант И, относительно недавно, П. Лоуэлль.
Суша и океан существовали совместно, начиная с отдаленнейших геологических эпох. Их существование связано с геохимической историей биосферы и является важной частью ее механизма.
С этой точки зрения попытки объяснить происхождение наземных организмов из морских несостоятельны и фантастичны. Воздушная жизнь в рамках геологического времени так же стара, как и морская; ее формы развиваются и изменяются, но это изменение происходит всегда на земной поверхности, а не в океанических водах.
Если бы это не было так, то был бы период революционный, период внезапного изменения механизма биосферы, который должен был бы быть обнаружен геохимическими процессами. Между тем этого нет.
С архейского периода механизм планеты и биосферы в общих чертах неизменен.
Жизнь остается в главных своих чертах в течение геологического времени постоянной, меняется только ее форма.
В действительности всегда на ней существовали все живые пленки — планктонная, донная, почвенная — и все живые сгущения — прибрежные, саргассовые (?) и пресноводные.
Менялись с ходом времени — колебались — их взаимные отношения, количества связанного в них вещества. Едва ли, однако, эти изменения могли быть очень значительны, так как при неизменном или почти неизменном в течение геологического времени притоке энергии, солнечного лучеиспускания, распределение этой энергии в пленках и сгущениях должно было быть обусловлено живым веществом, которое в нем является основной и единственной изменчивой частью в термодинамическом поле биосферы.
Но само живое вещество не является случайным созданием. Оно в себе самом также отражает солнечную энергию, как отражают ее его земные концентрации.
Можно идти дальше в нашем анализе, углубиться в тот сложный механизм, который представляют собой живые пленки и сгущения, и в те химические взаимоотношения, какие должны для них при этом выявляться. Я надеюсь в следующих очерках остановиться на этих двух проблемах — однородных живых веществах и структуре живой природы в биосфере.