Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики — страница 48 из 70



Так что останки Гранта, его жены Джулии, их гробы и туристы, пришедшие на них посмотреть, — все это образы информации, записанной на стенах мавзолея.

Но почему надо на этом останавливаться? Представьте огромную сферу, заключающую в себе всю Солнечную систему. Грант, Джулия, гробы, туристы, мавзолей, Земля, Солнце и остальные восемь планет (Плутон все-таки планета!) — всё это закодировано информацией на огромной сфере. И так можно продолжать, пока мы не достигнем границ Вселенной или бесконечности.

Очевидно, что вопрос о том, где находится конкретный бит информации, не имеет однозначного ответа. Обычная квантовая механика вносит некоторую неопределенность в такие вопросы. Пока кто-то не посмотрит на частицу или, в нашем случае, на любой объект, имеет место квантовая неопределенность его положения. Но как только объект подвергся наблюдению, все придут к согласию о том, где он находится. Если объектом окажется атом тела Гранта, обычная квантовая механика делает его положение немного неопределенным, но она не поместит его за границами пространства или даже за стенками гроба. Однако если спрашивать о том, где находится бит информации, неправильно, то как надо ставить этот вопрос?

Пытаясь достичь все большей и большей точности, особенно при одновременном учете гравитации и квантовой механики, мы приходим к математическим представлениям, включающим узоры из пикселов, танцующих на далеком двумерном экране, и о секретном коде, преобразующем перемешанные узоры в целостные трехмерные образы. Но, конечно, не существует экрана, покрытого пикселами и окружающего все области пространства. Гроб Гранта — это часть мавзолея Гранта, который является частью Солнечной системы, содержащейся в галактической сфере, охватывающей Млечный Путь… и так, пока не будет охвачена вся Вселенная. На каждом уровне все, что мы охватили, может быть описано как голографический образ, но когда мы ищем саму голограмму, она всегда оказывается на следующем уровне[117].

При всей своей странности — а он очень странный — голографический принцип уже стал частью общепринятой теоретической физики. Это больше не догадка из области квантовой гравитации; он стал повседневным рабочим инструментом, отвечающим на вопросы не только о квантовой гравитации, но и о таких прозаических вещах, как атомные ядра (см. главу 23).

Хотя голографический принцип радикально перестраивает законы физики, его доказательство не требует изощренной математики. Все начинается со сферической области пространства, которая выделена воображаемой математической границей. Эта область содержит всевозможные «вещи»: водород в виде газа, фотоны, сыр, вино — все что угодно, лишь бы оно не переливалось за границу. Я буду называть все это вещами.

Самая массивная вещь, которую можно запихнуть в нашу область, — это черная дыра, горизонт которой совпадает с границей. Вещи не должны быть массивнее ее, в противном случае они не поместятся внутри границы, но существует ли какой-то предел, ограничивающий число битов информации в этих вещах? Нас интересует определение максимального числа битов, которое можно запихнуть внутрь сферы.

Теперь представьте себе материальную сферическую оболочку— Уже не воображаемую границу, а сделанную из настоящего вещества, — окружающую всю рассматриваемую систему. Эта оболочка, будучи сделанной из реальной материи, имеет собственную массу. Из чего бы она ни состояла, ее можно сжимать внешним давлением Или гравитационным притяжением находящегося внутри вещества, Пока она идеально не совпадет с границей области.

Подбирая массу оболочки, можно создать горизонт, который совпадет с границей области

Исходные вещи, которые были у нас с самого начала, содержат некоторое количество энтропии — скрытой информации, — значение которой мы уточнять не будем. Однако нет сомнений в том, что окончательная энтропия — это энтропия черной дыры, то есть ее площадь, выраженная в планковских единицах.

Для завершения доказательства остается лишь напомнить, что второе начало термодинамики требует, чтобы энтропия всегда возрастала. Поэтому энтропия черной дыры должна быть больше, чем у любых исходных вещей. Сводя всё воедино, получаем доказательство удивительного факта: максимальное число битов информации, которое может при каких угодно условиях поместиться в области пространства, равно числу планковских пикселов, которые можно уместить на площади ее границы. Неявно это означает, что существует «граничное описание» всего, что происходит внутри области пространства; поверхность границы — это двумерная голограмма трехмерной внутренней области. Для меня это самый лучший тип доказательства: пара фундаментальных принципов, мысленный эксперимент и далеко идущие выводы.

Существует другой способ описания голографического принципа. Если граничная сфера очень велика, любая небольшая ее часть будет очень похожа на плоскость. В прошлом люди заблуждались, считая Землю плоской, из-за большого ее размера. Пусть наша сфера во много раз больше, скажем, миллиард световых лет в диаметре. При взгляде из точки, находящейся внутри такой сферы, но всего в нескольких световых годах от границы, сферическая поверхность будет казаться плоской. Это означает, что обо всем происходящем в пределах нескольких световых лет от границы можно думать как о голограмме плоского листа пикселов.


Конечно, не надо думать, будто я имею в виду обычную голограмму. Нечего и говорить о том, что зернистость обычного листа фотографической пленки намного больше, чем у листа из пикселов планковского размера. Более того, этот новый тип голограммы может с течением времени меняться; это голографическое кино.

Но самое большое отличие состоит в том, что эта голограмма квантово-механическая. Она мерцает и колеблется из-за неопределенности квантовых систем так, чтобы трехмерные образы испытывали квантовую дрожь. Мы все состоим из битов, включенных в сложные квантовые движения, но если приглядеться к этим битам поближе, то обнаруживается, что они находятся на самых дальних рубежах космоса. Я не знаю в мире ничего менее интуитивного, чем это. Добиться общего понимания голографического принципа — это, вероятно, самый большой вызов физикам со времен создания квантовой механики.

Каким-то образом статья 'т Хоофта, опередившая мою на несколько месяцев, прошла в основном незамеченной. Отчасти это связано с ее названием: «Размерная редукция в квантовой гравитации». Выражение «размерная редукция» оказалось узкоспециальным термином, которое физики применяют в совершенно ином смысле, нежели вкладывал в него 'т Хоофт. Я постарался, чтобы мою статью не постигла та же судьба, и назвал ее «Мир как голограмма».

По дороге из Голландии домой я начал все это записывать. Меня очень взбудоражил голографический принцип, но я также знал, что будет очень трудно убедить в нем кого-либо еще. Мир как голограмма? Я почти явственно слышал скептическую реакцию: «Он был хорошим физиком, но совершенно спятил».

Дополнительность черных дыр и голографический принцип могут относиться к той категории идей вроде представления о существовании атомов, которые обосновываются физиками и философами на протяжении сотен лет. Создать и изучить черную дыру в лаборатории — дело для нас столь же трудное, как для древних греков — увидеть атомы. Но на деле понадобилось менее пяти лет, чтобы сформировался консенсус Как случился это сдвиг парадигмы? Оружием, которое привело к окончанию битвы, стала в основном строгая математика теории струн.

Часть IVКольцо смыкается

19Оружие массового убеждения

В действительности я не готов, пожалуй, называть теорию струн «теорией», скорее, «моделью», или даже так: это просто догадка. В конце концов, теория должна сопровождаться указаниями о том, как действовать для выявления вещей, которые она описывает, в нашем случае — элементарных частиц, и, хотя бы в принципе, она должна позволять сформулировать правила для вычисления свойств этих частиц и получения относительно них новых предсказаний. Представьте, что я даю вам кресло, поясняя, что ножек у него пока нет, а сиденье, спинка и подлокотники, возможно, скоро будут доставлены; что бы я вам ни вручил, могу ли я называть это креслом?

— Герард 'т Хоофт

Самого по себе голографического принципа было недостаточно для победы в Битве при черной дыре. Он был недостаточно строгим и не имел надежного математического основания. Реакцией на него был скептицизм: мир как голограмма? Похоже на научную фантастику. Выдуманный физик Стив в далеком будущем переходит в «иной мир», а император с графом в это же время наблюдают за его уничтожением. Напоминает спиритизм.

Почему маргинальная идея, годами лежащая без использования, неожиданно склонят чашу весов в свою пользу? В физике подобное нередко случается безо всякого предупреждения. Важное и яркое событие неожиданно привлекает внимание критической массы физиков, и за короткое время странное, фантастическое, немыслимое становится обычным.

Иногда толчком становится экспериментальный результат. Эйнштейновская корпускулярная теория света медленно завоевывала признание, поскольку большинство физиков надеялось, что какой-то новый поворот событий спасет в итоге волновую теорию. Однако в 1923 году Артур Комптон изучил рассеяние рентгеновских лучей на атомах углерода и показал, что набор углов и энергий в точности соответствует столкновению частиц. Между исходным утверждением Эйнштейна и экспериментом Комптона прошло восемнадцать лет, но потом всего за несколько месяцев сопротивление корпускулярной теории света рассеялось.

Математический результат, особенно если он неожиданный, тоже может послужить таким катализатором. Базовые элементы Стандартной модели (физики элементарных частиц) датируются серединой 1960-х годов, но имелись доводы (некоторые из них были выдвинуты создателями теории) о том, что ее математические основания внутренне противоречивы. Затем в 1971 году молодой, никому не известный аспирант выполнил чрезвычайно сложные и тонкие вычисления и объявил, что эксперты ошибались. За очень короткое время Стандартная модель стала действительно стандартной, а неизвес