Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики — страница 51 из 70

[127]. И хотя мы понимаем происхождение цвета кварков не лучше, чем происхождение их аромата, цвет играет намного более важную роль в КХД.

Глюоны, согласно КХД, не имеют аромата, но по отдельности они даже еще более цветные, чем кварки. Каждый глюон имеет положительный и отрицательный полюса, а каждый полюс обладает цветом — красным, зеленым или голубым. Можно сказать, что существует девять типов глюонов (это несколько избыточное упрощение, но по сути корректное)[128].

Почему существует три цвета, а не два, не четыре, не какое-то другое число? Тут нет никакой связи с тем, что цветное зрение опирается на три основных цвета. Как я уже отметил, цветные метки произвольны и не имеют ничего общего с цветами, которые мы видим. На самом деле никто не знает, почему их именно три; это одна из тех загадок, которые указывают, как далеки мы еще от полного понимания элементарных частиц. Однако по тому, как они сочетаются в нуклонах и мезонах, мы знаем, что существует три, и только три цвета кварков.


Девять типов глюонов


Тут я должен сделать признание. Несмотря на то что я занимаюсь физикой элементарных частиц более сорока лет, я на самом деле не очень люблю этот раздел физики. Слишком много тут всего намешано: шесть ароматов, три цвета, десятки произвольных числовых постоянных — трудно это назвать примером простоты и элегантности. Почему я продолжаю этим заниматься? Причина (и, я думаю, не только для меня) в том, что сама эта мешанина говорит нам о природе что-то важное. Трудно поверить, что бесконечно малые точечные частицы могут обладать таким числом свойств и такой сложной структурой. На некотором, еще не открытом уровне должен скрываться механизм, поддерживающий все эти так называемые элементарные частицы. Любопытство относительно этого скрытого изрядной сложности механизма и его влияния на фундаментальные законы природы — вот что заставляет меня брести через ужасное болото физики частиц.

Как водится, кварки стали хорошо известны широкой публике. Но если бы меня попросили предсказать, какие из частиц дают нам лучшие подсказки относительно скрытого в глубине механизма, я бы сделал ставку на глюоны. О чем пытаются рассказать нам эти липкие парочки положительных и отрицательных концов?

В главе 4 я объяснял, что в квантовой теории поля есть нечто большее, чем список частиц. Два других «ингредиента» — это пропагаторы, мировые линии, показывающие движение частиц из одной точки пространства-времени в другую, и узлы. Займемся сначала пропагаторами. Поскольку глюоны имеют два полюса, каждый своего цвета, физики часто изображают их мировые линии двойными. Чтобы обозначить конкретный тип глюона, будем подписывать его цвета рядом с отдельными линиями[129].

Последний «ингредиент» квантовой теории поля — это список узлов. Наиболее важны для нас те узлы, которые описывают распад одного глюона на два[130]. Схема исключительно проста: когда глюон с двумя концами распадается, возникает два новых конца. Согласно математическим правилам КХД, они должны быть одинакового цвета. Рассмотрим два примера. При просмотре снизу вверх видно, что сине-красный глюон распадается на сине-синий и сине-красный; на второй схеме сине-красный глюон распадается на сине-зеленый и зелено-красный.

Эти узлы можно перевернуть вниз головой, чтобы показать, как два глюона могут слиться в один.

Хотя все это неочевидно и требует времени для полного понимания, глюоны имеют сильную тягу к слипанию друг с другом и образованию длинных цепочек: положительный конец к отрицательному, красный к красному, синий к синему, зеленый к зеленому. Эти цепочки и есть струны, которые связывают кварки, придавая адронам их струнные свойства.

Струны в фундаменте

Идея эластичных струн вновь всплыла при изучении квантовой гравитации, с той лишь разницей, что они оказались меньше и быстрее примерно на двадцать порядков величины. Эти крошечные, гибкие и невероятно мощные нити энергии называются фундаментальными струнами[131].

Позвольте мне во избежание недоразумений еще раз повторить, что в современной физике теория струн имеет два совершенно различных приложения. В применении к адронам она используется в масштабах, которые кажутся крошечными по обычным человеческим меркам, но являются гигантскими с точки зрения фундаментальной физики. То, что три типа адронов — нуклоны, мезоны и глюболы — являются струнообразными объектами, которые описываются математикой теории струн, — это признанный факт. Лабораторным экспериментам, лежащим в основе теории адронных струн, уже почти полвека. Струны, которые связывают адроны, а сами состоят из глюонов, называются КХД-струнами. Фундаментальные же струны, связываемые с гравитацией и физикой около-планковского масштаба, как раз и вызвали все волнения, споры, перепалки в блогах и выход в последнее время полемических книг.

Фундаментальные струны могут быть настолько же меньше протона, насколько протон меньше штата Нью-Джерси. Но для них гравитация играет первостепенную роль.

Гравитационные силы во многих отношениях очень похожи на электрические. Формула, описывающая силу взаимодействия между электрически заряженными частицами, называется законом Кулона; формула для сил гравитации — законом всемирного тяготения Ньютона. Обе эти силы — и электрические, и гравитационные — подчиняются закону обратных квадратов. Это значит, что величина силы убывает как квадрат расстояния. Удвоение расстояния между частицами приводит к уменьшению силы в четыре раза; утроение расстояния снижает силу в девять раз; на учетверенном расстоянии сила станет меньше в шестнадцать раз и т. д. Кулоновская сила между двумя частицами пропорциональна произведению их электрических зарядов; ньютоновская сила притяжения пропорциональна произведению их масс. Это сходства, но есть и различия: электрическая сила может быть отталкивающей (между одинаковыми зарядами) или притягивающей (для противоположных зарядов), но гравитация всегда только притягивает.

Одно важное сходство состоит в том, что оба типа сил могут порождать волны. Представьте себе, что происходит с силой, действующей между двумя отдаленными заряженными частицами, когда одна из них неожиданно перемещается, скажем, вдаль от другого заряда. Можно подумать, что сила, действующая на вторую частицу, при смещении первой мгновенно изменится. Но в этой картине кое-что ошибочно. Если сила, действующая на далекую частицу, действительно менялась бы сразу, без задержки, можно было бы использовать этот эффект для отправки мгновенных сообщений в дальние районы космоса. Но мгновенные сообщения нарушают глубочайшие принципы физики. Согласно специальной теории относительности, никакой сигнал не может распространяться быстрее света. Нельзя передать сообщение за меньшее время, чем требуется свету на то, чтобы пройти то же расстояние.

В действительности сила, действующая на дальнюю частицу, не меняется мгновенно при резком движении ближней частицы. Вместо этого от переместившейся частицы начинает распространяться (со скоростью света) возмущение. Только когда оно достигнет дальней частицы, действующая на нее сила изменится. Распространение этого возмущения напоминает волновые колебания. Когда волна наконец приходит, она толкает вторую частицу, заставляя ее вести себя подобно пробке, качающейся на волнах в пруду.

Ситуация аналогична тому, как если бы гигантская рука сдвинула Солнце. Его смещение не ощущалось бы на Земле в течение восьми минут — времени, которое требуется свету, чтобы пройти путь от Солнца. «Послание» распространяется, опять же со скоростью света, в форме колебаний кривизны, или гравитационных волн. Гравитационные волны являются для массы тем же, чем электромагнитные волны — для электрического заряда.

Теперь добавим немного квантовой теории Как мы знаем, энергия колеблющихся электромагнитных волн приходит неделимыми квантами, которые называются фотонами Планк и Эйнштейн имели очень серьезные причины считать, что колебательная энергия может поступать лишь дискретными порциями, и если только мы очень крупно не заблуждаемся, те же аргументы применимы и к гравитационным волнам. Кванты гравитационного поля называются гравитонами.

Здесь я должен сказать, что существование гравитонов, в отличие от фотонов, — это экспериментально не проверенная догадка. Она, как считает большинство физиков, базируется на надежно установленных принципах, но тем нем менее остается гипотезой. Но даже если это так, рассуждения, приводящие к выводу о существовании гравитонов, убедительны для большинства физиков, которые задумывались над этим вопросом.

Сходство между фотонами и гравитонами поднимает интересные вопросы. Электромагнитное излучение объясняется (в квантовой теории поля) фейнмановской диаграммой, в которой заряженная частица — электрон, например, — испускает фотон.

Узел испускания фотона


Естественно ожидать, что гравитационные волны возникают, когда частицы испускают гравитоны. Поскольку в гравитационном взаимодействии участвует всё, то все частицы должны быть способны испускать гравитоны.

Узел испускания гравитона


Даже гравитоны могут испускать гравитоны.

К сожалению, включение гравитонов в фейнмановские диаграммы приводит к математической катастрофе. Почти полвека физики-теоретики пытались придать смысл квантовой теории поля в применении к гравитонам и раз за разом терпели поражение, так что многие из нас пришли к выводу, что это бесполезное дело.

Проблемы с квантовой теорией поля

Одним из ярких эпизодов поездки в Кембридж в 1994году был обед с моим старым другом сэром Роджером Пеироузом. Сэр Роджер как раз только что стал сэром Роджером, и мы с Энн приехали в Оксфорд поздравить его.