Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики — страница 58 из 70

Но есть предел. Я имею в виду не практический предел, связанный с ограничениями современной технологии. Я говорю о законах природы и фундаментальных физических принципах. Каков диаметр наименьшей области, которую может занимать объект массой в один килограмм? Сразу вспоминается планковский размер, но это неправильный ответ. Объект можно сжимать, пока он не станет черной дырой с массой в один килограмм[140], но не дальше, — это самый компактный объект данной массы.

Какого же размера будет однокилограммовая черная дыра? Ответ, вероятно, окажется меньше, чем вы ожидаете. Шварцшильдовский радиус (радиус горизонта) такой черной дыры составляет около одного миллиона планковских длин. Может показаться, что это много, но в действительности это в триллион раз меньше одиночного протона. Такая черная дыра будет столь же мала, как элементарная частица, так почему нам не признать ее таковой?

'т Хоофт так и поступил. Или, по крайней мере, он сказал, что — нет важных проявлений, в которых такой объект фундаментально отличался бы от элементарной частицы.

Спектр элементарных частиц не обрывается на платовской массе. Он продолжается до бесконечно больших масс в форме черных дыр.

т Хоофт также доказывал, что черные дыры не могут иметь произвольную массу: подобно обычным частицам, им доступен лишь определенный дискретный набор масс. Однако при массах больше планковской они распределены настолько плотно, что совершенно сливаются[141].

Переход от обычных частиц (или возбужденных струн) к черным дырам не столь резкий, как я изобразил на рисунке. Скорее всего, спектр возбужденных струн переходит в спектр черных дыр без отчетливой границы вблизи планковской массы. Это было предположение ’т Хоофта, и, как мы увидим, есть убедительные причины в него верить.

Обсчитывая струны и черные дыры

Алисин аэроплан — это метафора того, как внешний вид зависит от зрителя. Алиса, сидя в кокпите, не видит на горизонте ничего удивительного. Но если смотреть извне черной дыры, кажется, что у аэроплана становится все больше и больше пропеллеров, которые постепенно охватывают весь горизонт. Алисин аэроплан также служит метафорой того, как работает теория струн. Когда струна падает к горизонту, внешний наблюдатель будет видеть, как материализуется все больше и больше фрагментов струны, которые постепенно заполняют горизонт.

Наличие энтропии у черных дыр предполагает, что у них есть скрытая микроскопическая структура, подобно молекулам в ванне теплой воды. Но само по себе существование энтропии не дает никакого намека на природу «атомов горизонта», хотя и позволяет грубо оценить их количество.

В Алисином мире атомы горизонта — это пропеллеры. Возможно, и в самом деле существует теория квантовой гравитации, основанная на пропеллерах, но, я думаю, что на эту роль больше подходит теория струн, по крайней мере сегодня.

Идея о том, что струны имеют энтропию, возвращает нас к самым ранним дням теории струн. Подробности сильно математизированы, но общую идею понять легко. Начнем с простейшей струны, представляющей элементарную частицу определенной энергии. Для определенности пусть это будет фотон. Присутствие (или отсутствие) фотона — это один бит информации.

А теперь давайте что-нибудь сделаем с фотоном, предполагая, что он действительно является крошечной струной: встряхнем его, или ударим другой струной, или просто положим на горячую сковородку[142]. Подобно небольшому резиновому кольцу, он начнет вибрировать, вращаться и растягиваться. Если добавлено достаточно энергии, получается огромная запутанная мешанина — клубок шерсти, с которым поиграла кошка. Это не квантовая, а тепловая дрожь.

Этот клубок шерсти вскоре становится слишком сложным, чтобы описывать его во всех деталях, но о нем по-прежнему можно получить общую информацию. Полная длина нити может составлять сотню метров. Запутанное месиво может образовать шар диаметром в пару метров. Такого рода описание будет полезно, даже если нет других подробностей. Упущенные детали — и есть скрытая информация, которая придает энтропию шару из струны.

Энергия и энтропия — все это напоминает о теплоте. И действительно, запутанные шары из струн, представляющие собой очень сильно возбужденные элементарные частицы, обладают температурой. Это также было известно с самых первых дней развития теории струн. Во многих отношениях эти запутанные возбужденные струны напоминают черные дыры. В 1993 году я всерьез задумывался: а вдруг черные дыры — не что иное, как огромные беспорядочно перепутанные шары из струн? Идея казалась захватывающей, но в деталях оказалась совершенно неверной.

Например, масса (или энергия) струны пропорциональна ее длине. Если 1 метр пряжи весит 1 грамм, то 100 метров будут весить 100 граммов, а 1000 метров — 1000 граммов.


Струнный клубок Черная дыра


Но энтропия струны тоже пропорциональна ее длине. Представьте себе движение вдоль струны со всеми ее поворотами и изгибами. Каждый из них — это несколько битов информации. Упрощенное изображение струны представляет ее как серию жестких звеньев решетки. Каждое звено либо горизонтальное, либо вертикальное.

Начнем с одного звена; оно может быть направлено вверх, вниз, влево или вправо. Всего четыре возможности. Это эквивалентно двум битам информации. Теперь добавим еще одно звено. Оно может продолжаться в том же направлении, свернуть под прямым углом (влево или вправо) или сделать разворот. Это еще два бита. Каждое следующее звено добавляет пару битов. Это означает, что скрытая информация пропорциональна общей длине струны.

Если и масса и энтропия запутанной струны пропорциональны ее длине, то не нужно сложной математики для понимания того, что ее энтропия пропорциональна массе:

Энтропия ~ Масса.

(В математике пропорциональность обозначается тильдой «-».)

Мы знаем, что энтропия обычной черной дыры тоже растет с массой. Но оказывается, соотношение «энтропия ~ масса» не выполняется для черных дыр. Чтобы понять почему, просто проследите за цепочкой пропорциональностей: энтропия пропорциональна площади горизонта; площадь пропорциональна квадрату шварцшильдовского радиуса; шварцшильдовский радиус пропорционален массе. Сведите все воедино, и вы увидите, что энтропия пропорциональна не массе, а квадрату массы черной дыры:

Энтропия — Масса2.

Если теория струн верна, то всё состоит из струн. Всё означает всё и должно включать в себя черные дыры. Летом 1993 года это меня глубоко разочаровало и опечалило.

На самом деле я просто сглупил. Я упускал нечто очевидное, но это не доходило до меня вплоть до сентября, когда я на месяц отправился в Нью-Джерси. Два самых важных центра теоретической физики — университет Ратджерса и Принстонский университет — оба находятся в Нью-Джерси примерно в двадцати километрах друг от друга. Мне предстояло прочитать по лекции в каждом из них, и обе были озаглавлены: «Как теория струн может объяснить энтропию черных дыр». Когда я первоначально об этом договаривался, то рисковал, надеясь, что задолго до лекций смогу разобраться, что же тут не так.

Не знаю, один ли я среди физиков с таким повторяющимся ночным кошмаром. У меня он возникает в разных формах с самого начала профессиональной деятельности более сорока пяти лет назад. Во сне я должен прочитать важную лекцию о некоем новом исследовании, но по мере того как срок лекции приближается, я обнаруживаю, что мне нечего сказать. У меня нет никаких заметок, а иногда я не могу даже вспомнить тему. Напряжение и паника нарастают. Иногда я даже вижу себя перед аудиторией в нижнем белье или, хуже того, вовсе без него.

Но теперь это был не сон. Первая из двух лекций должна была состояться в Ратджерсе. По мере приближения срока я все сильнее напрягался, стараясь спасти положение, но у меня ничего не получалось. Затем, когда оставалось всего дня три, я вдруг осознал собственную глупость. Ведь я оставил за рамками рассмотрения гравитацию.

Гравитация проявляется как притяжение объектов друг к другу, которое их сближает. Возьмите огромный камень — Землю, например. Без гравитации он может оставаться целым за счет молекулярного сцепления, как любой камень. Но гравитация привносит мощный новый эффект, притягивая части Земли, сдавливая ядро и сжимая его до меньших размеров. Притягивающая сила гравитации дает и еще один эффект: она меняет массу Земли. Отрицательная потенциальная энергия, связанная с гравитацией, немного уменьшает массу планеты. Ее реальная масса немного меньше, чем сумма частей.

Тут я должен остановиться и объяснить один контринтуитивный факт. Вспомним на минуту беднягу Сизифа, как он вечно заталкивает на вершину холма свой камень, лишь для того, чтобы увидеть, как тот скатывается вниз. Сизифов цикл сохранения энергии:

химическая → потенциальная → кинетическая → тепловая.

Забудем пока о химической энергии (о меде, которым питается Сизиф) и начнем цикл с потенциальной энергии камня на вершине холма. Вода перед Ниагарским водопадом тоже обладает потенциальной энергией. И в обоих случаях, когда масса падает на меньшую высоту, потенциальная энергия уменьшается. В итоге она превращается в тепло, но представим, что это тепло излучается в космос. Конечным результатом становится то, что камень и вода теряют потенциальную энергию вместе с высотой.

То же самое происходит с веществом, составляющим Землю, когда оно прижимается (гравитацией) ближе к центру Земли: оно теряет потенциальную энергию. Потерянная потенциальная энергия выделяется в форме тепла, которое, в конечном счете, излучается в космос. Результат: Земля пережила потерю энергии, а значит, и потерю массы.

Итак, я стал подозревать, что масса длинной запутанной струны тоже может уменьшаться под действием гравитации и не быть пропорциональной длине, если надлежащим образом учесть гравитационные эффекты. Вот мысленный эксперимент, который я вообразил. Предположим, что есть рукоятка, с помощью которой можно плавно усиливать и ослаблять силу гравитации. Поверните рукоятку в сторону уменьшения, и Земля немного расширится, слегка потяжелев. Поверните рукоятку в другую сторону, и Земля сожмется, став при этом немного легче. Поверните еще больше, и гравитация ст