Прошло двадцать лет с той поры, как Уилер подарил черным дырам их имя, и многоуважаемые астрофизики были уже по горло сыты теоретическими выкладками. Теперь они ожидали куда большего: эмпирических доказательств. Но даже когда такие доказательства накапливались, наблюдениям всегда находилось альтернативное объяснение, иное, чем существование черной дыры. Альтернативные объяснения становились все более искусственными (возможно, облако газа устроено таким образом, что данные искажаются, и прочие нелепые фантазии). “Это нарушало действие принципа бритвы Оккама, – говорит Рай. – Эти объяснения были настолько сложными и необоснованными, что. – И он пренебрежительно машет рукой. – Но я не мог просить денег в МТИ для поиска черных дыр, если более уважаемые ученые факультета были уверены, что черные дыры не существуют”.
Однако постепенно, шаг за шагом в сообществе астрофизиков нарастала уверенность в существовании компактных объектов во Вселенной. Открытие пульсаров убедило многих ученых в наличии нейтронных звезд. Открытие пульсара в Крабовидной туманности, оставшейся от яркой вспышки сверхновой, склонило общественное мнение к тому, что нейтронные звезды являются конечным состоянием гравитационного коллапса – по крайней мере, в случае некоторых звезд. Яркий рентгеновский источник Лебедь Х-i указывал на существование черных дыр. Решающим аргументом стал пульсар Халса – Тейлора, косвенно продемонстрировавший потери энергии на образование гравитационных волн. По мере того как все больше ученых убеждалось в том, что звезды заканчивают свой эволюционный путь в качестве компактных объектов, крепла также уверенность в существовании источников гравитационных волн. Оставалось ответить на вопрос: “Сколько их?”
Белые карлики и нейтронные звезды обладают крайне низкой светимостью. Мы не можем их наблюдать, если они находятся слишком далеко от нас, за пределами нашей Галактики. Имеются лишь указания на их существование в нашей собственной Галактике Млечный Путь, размер которой в поперечнике составляет около ста тысяч световых лет. Ближайшая большая галактика, Туманность Андромеды, находится от нас на расстоянии около 2,5 миллиона световых лет. Мы видим сверхновые в далеких галактиках, но если они отдалены от нас на многие миллионы или миллиарды световых лет, увидеть их тоже не представляется возможным. У нас имеются все основания экстраполировать накопившиеся знания о нашей собственной галактике на другие галактики. Существует огромное количество звезд в огромном числе галактик в наблюдаемой Вселенной. Среди сотен миллиардов звезд в сотнях миллиардов галактик должны существовать звезды, завершившие свой жизненный цикл. Но внегалактические компактные объекты слишком слабы, чтобы обнаружить их с помощью телескопов.
При такой огромной популяции компактных объектов LIGO может надеяться обнаружить их с помощью гравитационно-волновой обсерватории, даже если их невозможно наблюдать в обычные телескопы. Компактные объекты сами по себе не излучают гравитационные волны, как не бьют сами по себе в барабан барабанные палочки. Они должны двигаться. Компактные массы должны испытывать ускорение, чтобы придать гравитационным волнам энергию. Пульсар Халса – Тейлора испытывает ускорение, вращаясь на своей орбите вокруг другой нейтронной звезды. Весьма вероятно, что большинство звезд рождаются парами и умирают тоже парами, хотя взрыв сверхновой, в результате которого образуется компактный звездный объект, может иногда выкидывать звезду-компаньона. Нейтронные звезды и черные дыры, поисками которых занимается LIGO, – это те, которые заканчивают свою жизнь парами. (Белые карлики в двойных системах оставляют лишь мелкую рябь на поверхности пространства-времени, и LIGO их заметить не в состоянии.) Подобно водовороту в искривленном пространстве-времени, компактные объекты вращаются друг вокруг друга и, испытывая при этом ускорение, излучают гравитационные волны.
Вот в это самое время, пока в Конгрессе разгораются дебаты, компактные двойные звездные системы за счет энергии своего орбитального вращения генерируют волны пространстве-времени, с каждым новым оборотом по спирали приближаясь друг к другу. Каждый следующий виток орбиты занимает немного меньше времени, чем предыдущий.
Все (а не только компактные) астрономические двойные системы излучают гравитационные волны. Изменяя свою орбиту из-за взаимодействия с Солнцем, теряя свою орбитальную энергию на излучение гравитационных волн, Земля медленно, по спирали, приближается к Солнцу. Луна неторопливо, по спирали, падает на нас[33]. Солнце близится к центру Галактики – но все это происходит бесконечно медленно, а образующиеся в результате гравитационные волны слишком слабы, чтобы их можно было зарегистрировать. Эти процессы займут бесконечно-бесконечно-бесконечно много времени даже в сравнении с возрастом Вселенной. Потухнет Солнце. Млечный Путь столкнется с Туманностью Андромеды. Шансов, что человечество будет наблюдать за грядущим Апокалипсисом, практически нет, так что Хокинг смело может делать ставки.
Но LIGO сумеет услышать заключительный этап жизни двойных систем, состоящих из нейтронных звезд и черных дыр, – тех самых пар компактных объектов, которые мы еще не наблюдали, потому что они расположены слишком далеко, чтобы обнаружить их с помощью обычных телескопов. Представьте себе последние минуты перед столкновением двух черных дыр. Обе черные дыры, каждая из которых имеет, скажем, около шестидесяти километров в поперечнике, перед тем как слиться друг с другом, делают сотни оборотов в секунду, двигаясь со скоростями, близкими к скорости света. Их движение в пространстве в последние мгновения перед слиянием вызывает волны, достаточно мощные для того, чтобы мы смогли их услышать, когда они дойдут до Земли. Вероятность обнаружить компактную двойную систему в течение последних пятнадцати минут ее жизни, длившейся до этого миллиарды лет, очень невелика, если, конечно, ограничить район поиска только нашей Галактикой.
В Млечном Пути одна нейтронная звезда сталкивается с другой нейтронной звездой, возможно, раз в десять тысяч лет, хотя эти оценки пока очень ненадежны. Возможно, что одна нейтронная звезда сталкивается с черной дырой раз в несколько сотен тысяч лет, а одна черная дыра сталкивается с другой черной дырой раз в пару миллионов лет. И было бы очень глупо потратить пятьдесят лет, чтобы построить LIGO ради поиска столкновений компактных двойных систем только в пределах нашей собственной Галактики.
Чтобы зарегистрировать столкновение черных дыр или нейтронных звезд в течение разумного времени (скажем, в течение года после ввода установки в эксплуатацию), LIGO должна быть чувствительна к источникам волн, расположенным в миллионах галактик вокруг нас. Однако другие галактики находятся далеко, и поэтому поле зрения детектора LIGO должно простираться на очень большие расстояния. Но общеизвестно, что чем дальше находится источник, тем слабее сигнал от него, поэтому, хотя первое поколение установки LIGO и провело шесть научных запусков (периоды времени, когда установка функционировала в полном объеме и производилась запись физических данных), в ходе их можно было надеяться обнаружить двойную систему нейтронных звезд на расстоянии, не превышающем примерно 45 миллионов световых лет (что соответствует расстоянию до скопления Девы, близлежащего к нам скопления галактик), и – немного дальше – пару черных дыр. Кажется, что это далеко, но, оказывается, недостаточно далеко. Ничего обнаружено не было.
После принстонского доклада Кипа Джерри все же задал ему тот вопрос: “Так откуда взялись все эти цифры?” Оптимистичные надежды на то, что первое поколение детекторов сможет зарегистрировать столкновения нейтронных звезд и/или черных дыр, основывались на оценке распространенности этих объектов во Вселенной. Но оценка эта грешила неопределенностью. Сегодня Кип отрицает, что в те времена преобладал оптимизм, и в доказательство приводит цитаты из различных документов. Он, по его словам, всегда считал, что вероятность регистрирования сигнала первым поколением детекторов была крайне невелика.
Впрочем, по его мнению, оптимистичные оценки тоже заслуживают внимания, поскольку не противоречат фундаментальным законам физики (хотя экспериментаторы и должны были учитывать более скромные, не столь оптимистичные предсказания). Но с точки зрения Джерри, верхний предел оценок нарушал основные принципы астрономии. Около тридцати лет назад Кип предложил Джерри пари, заявив, что LIGO зарегистрирует гравитационные волны до начала нового тысячелетия. Не согласившийся с этим Джерри внес в условия пари некоторые коррективы. Они состояли в том, что по меньшей мере две независимые группы должны будут не только подтвердить обнаружение гравитационных волн, но и признать, что анализ, выполненный другой группой, не содержит ошибок. Однако внесенные коррективы не пригодились. К 1 января 2000 года первое поколение детекторов установки LIGO находилось лишь на финальной стадии подготовки эксперимента, и ничего не было готово к сбору данных. Джерри уверяет, будто в какой-то момент условия пари попросту исчезли со стены его кабинета.
Кип не согласен: “Сообщаю для протокола: по-моему, условия пари никуда не исчезали, а висели на стене постоянно, за исключением тех нескольких дней, когда я снял листок в знак признания своего проигрыша”.
Джерри говорит, что не стал требовать свой выигрыш сразу. Вместо этого он при каждом удобном случае интересовался у друзей Кипа: “Ну, и как там Кип?” Таким образом он настойчиво напоминал ему о долге.
Кип возражает: “У Джерри явные нелады с памятью. Я проиграл пари первого января 2000 года, но сохранил записку, которую получил от Джерри четвертого апреля того же года. Текст там такой: «Огромное спасибо за любезное письмо и ОЧЕНЬ хорошее вино! Я, Джим Ганн, Богдан Пачинский, Скотт Тремейн и Мартин Рис выпили его за Ваше здоровье и за успех в деле обнаружения гравитационных волн вообще и LIGO в частности. С наилучшими пожеланиями, искренне Ваш – Джерри О.»”.