«Бог» Докинза. От «Эгоистичного гена» к «Богу как иллюзии» — страница 6 из 41

Мендель показал, что наследование, по-видимому, определяется некими «единицами» или «факторами». Но что это за единицы? Это подводит нас к открытию гена – событию важному как и само по себе, так и в свете своего фундаментального значения для дарвинистского мировоззрения в изложении Докинза.

Открытие гена: Томас Хант Морган

В англоязычном мире идеи Менделя высоко оценил кембриджский генетик Уильям Бейтсон (1861–1926), приложивший значительные усилия для прояснения принципов регуляции наследования признаков. В частности, для обозначения этой области исследований он предложил термин «генетика». Тем не менее Бейтсон решительно возражал против предположения, что эволюция происходила путем накопления небольших изменений, хотя, казалось бы, именно это предполагала теория Менделя и требовала теория Дарвина. Можно утверждать, что Бейтсон и его последователи серьезно препятствовали синтезу дарвиновской теории эволюции путем естественного отбора и менделевской генетики из-за сомнений в их объяснительной силе[58][59].

К 1905 году Бейтсон установил, что некоторые признаки каким-то образом сцеплены друг с другом, хотя характер этого сцепления[60] был далеко не ясен. В безуспешной попытке объяснить свои загадочные наблюдения Бейтсон использовал такие туманные физические аналогии, как «сцепление» (coupling) и «отталкивание» (repulsion)[61][62]. Работы Бейтсона свидетельствуют, что он мыслил в терминах конкретных физических сил, аналогичных магнетическим или электрическим, способных либо притягивать, либо отталкивать факторы наследственности. В конце концов, решение этих загадок было изложено в 1926 году в основополагающей статье американского генетика Томаса Ханта Моргана (1866–1945)[63]. Ключом к решению стало понятие «ген».

Вдохновленный идеями Менделя, для изучения передачи наследственных признаков Морган решил использовать плодовую мушку с коротким репродуктивным циклом Drosophila melanogaster. Как и Мендель, Морган предпочел сосредоточиться на четко различимых парных признаках. У дрозофилы самой известной из таких черт был цвет глаз (красный или белый). Отмечая закономерности в распределении красных и белых глаз, Морган модифицировал теорию Менделя в одном важном положении: не все наследственные признаки передаются независимо, как предполагал Мендель. Некоторые из них, похоже, связаны друг с другом и, таким образом, наследуются вместе, а не по отдельности.

Самый важный вывод Моргана касался «единиц» или «факторов» (ныне известных как «гены»), которые отвечают за передачу признаков от поколения к поколению. К тому времени уже было известно, что деление клеток сопровождается появлением крошечных нитевидных структур, известных как «хромосомы», и кто-то уже догадывался, что они могут быть ответственны за передачу наследственной информации. Морган смог предоставить неопровержимые доказательства, что это действительно так. Гены, ответственные за передачу наследственной информации, физически расположены на хромосомах. В конце концов благодаря увеличению разрешающей способности микроскопов[64] стало возможным визуальное подтверждение этого утверждения.

У плодовых мушек, с которыми работал Морган, было четыре хромосомы необычайно большого размера, что значительно облегчало их изучение под микроскопом. Морган обнаружил, что существуют четыре различные группы признаков, которые, по-видимому, наследуются вместе. И это число точно соответствует числу пар хромосом, наблюдаемых у дрозофилы. Он также обнаружил, что одна из четырех групп сцепленных признаков меньше, чем остальные три. Это, как ему представлялось, было связано с тем, что одна из хромосом дрозофилы короче трех других. Несмотря на необходимость дальнейшего изучения роли хромосом в передаче наследственной информации, связная картина уже начала вырисовываться.

Изложение и анализ своих открытий Морган представил в двух статьях, опубликованных в журнале Science в 1910 и 1911 годах. Его хромосомная теория наследственности предполагала, что каждая хромосома содержит набор небольших единиц, называемых генами (термин, который он в 1909 году позаимствовал у своего коллеги по Колумбийскому университету, датского физиолога Вильгельма Иогансена). При этом каждый отдельный ген обладает своим собственным местом на определенной хромосоме. Менделевское представление о дискретных наследственных факторах теперь можно было cформулировать с использованием термина «ген». Так стало возможным то, что позже стало известно как «неодарвинистский» синтез: менделевская генетика как основа эволюционных изменений и сопряженного с ними естественного отбора, предопределяющего их результат[65].

Одним из величайших достижений ранней научной революции XVII века была «математизация природы». Растущее осознание, что глубинные структуры природы могут быть представлены математически, стало одновременно и стимулом к научной рефлексии[66], и причиной глубоких раздумий на тему «непостижимой эффективности» математики при описании реальности[67]. Неудивительно, что многие заинтересовались возможностью выразить основные идеи Дарвина математически. Если Дарвин – это «Ньютон травинки»[68][69], не сыграет ли математика такую же важную роль в изучении биологических законов, какую она сыграла для ньютоновских законов механики?

Первые серьезные попытки создать математическую теорию естественного отбора были предприняты в 1920-х годах. Для этого в основном использовалась теоретическая популяционная генетика, над которой работал упоминавшийся выше в связи с критикой Менделя Рональд А. Фишер. Также важный вклад в это направление внесли Джон Холдейн (1892–1964) и Сьюалл Райт (1889–1988)[70]. Знаковую работу Фишера «Генетическая теория естественного отбора» можно рассматривать как «своего рода математико-менделевское приложение к «Происхождению видов»»[71]. Фишер, Холдейн и Райт разработали сложные математические модели эволюции, которые объясняли, каким образом возникают мутации и какую роль в их распространении в популяции играет естественный отбор. Примерно к 1932 году первая фаза «эволюционного синтеза» была завершена. В 1937 Феодосий Добжанский (1900–1975) положил начало второй фазе, опубликовав знаковую книгу «Генетика и происхождение видов», в которой предложил объяснение того, каким образом появились виды живых организмов.

Тем не менее требовалось дальнейшее углубление в молекулярные основы генетики. Решительный шаг в этом направлении был сделан в Соединенных Штатах во время Второй мировой войны. К нему мы сейчас и обратимся.

Роль ДНК в генетике

Открытие Морганом важнейшей роли хромосом в процессах наследования вызвало новый интерес к их химическому составу. Из чего на самом деле состоят эти нитевидные волокна? Швейцарский биохимик Фридрих Мишер (1844–1895) в 1868 году установил химический состав клеточных ядер.

Он определил, что ядра содержат два основных компонента: нуклеиновую кислоту (теперь известную как дезоксирибонуклеиновая кислота, или ДНК) и определенную разновидность белков (ныне известны как гистоны)[72]. Нуклеиновым кислотам в то время не придавали особого значения с биологической точки зрения. Химический анализ показывал, что они не очень разнообразны и состоят из небольшого количества компонентов.

В 1938 году американский биохимик Фибус Левен (1869–1940), работавший тогда в Рокфеллеровском институте в Нью-Йорке, обнаружил, что ДНК представляет собой удивительно длинный полимер[73], который состоит из повторяющихся четырех единиц-нуклеотидов: аденина (А), гуанина (G), тимина (Т) и цитозина (С). Многие (включая самого Левена) сочли, что ДНК вряд ли может играть какую-либо важную роль в передаче наследственных признаков, так как структура этой молекулы химически слишком проста, чтобы кодировать генетическую информацию, а следовательно, ключ к молекулярным основам генетики должен скрываться в обнаруженных в хромосомах белках.

Как это часто бывает, разгадка тайны появилась откуда не ждали. В 1928 году английский бактериолог Фред Гриффит (1879–1941) участвовал в исследовании эпидемии пневмонии в Лондоне. Изучая вызвавший эту вспышку пневмококк, Гриффит сделал удивительное открытие: живые пневмококки могут перенимать генетические черты от других, мертвых пневмококков в результате процесса, который он назвал «трансформацией». Но как такое возможно? Мертвые пневмококки способны передавать только химические вещества, в частности два типа нуклеиновых кислот (рибонуклеиновая кислота /РНК/ и дезоксирибонуклеиновая кислота / ДНК/) и белки. Как эти вещества могут вызывать наследуемые изменения в живых клетках?

Работа Гриффита не была оценена по достоинству до тех пор, пока исследовательская группа, возглавляемая Освальдом Эвери (1877–1955), не повторила его эксперименты в Рокфеллеровском институте в Нью-Йорке. Эвери с коллегами начали детальные исследования того, каким образом генетическая информация передается к живым пневмококкам. Была проведена серия экспериментов, показавших, что наследственную информацию переносят не белки или РНК, а именно ДНК[74]