Большая книга занимательных наук — страница 5 из 8

Пятое действие

Алгебру называют нередко «арифметикой семи действий», подчеркивая, что к четырем общеизвестным математическим операциям она присоединяет три новых: возведение в степень и два ему обратных действия.

Наши алгебраические беседы начнутся с «пятого действия» – возведения в степень.

Вызвана ли потребность в этом новом действии практической жизнью? Безусловно. Мы очень часто сталкиваемся с ним в реальной действительности. Вспомним о многочисленных случаях вычисления площадей и объемов, где обычно приходится возводить числа во вторую и третью степени. Далее: сила всемирного тяготения, электростатическое и магнитное взаимодействия, свет, звук ослабевают пропорционально второй степени расстояния. Продолжительность обращения планет вокруг Солнца (и спутников вокруг планет) связана с расстояниями от центра обращения также степенной зависимостью: вторые степени времен обращения относятся между собою, как третьи степени расстояний.

Не надо думать, что практика сталкивает нас только со вторыми и третьими степенями, а более высокие показатели существуют только в упражнениях алгебраических задачников. Инженер, производя расчеты на прочность, сплошь и рядом имеет дело с четвертыми степенями, а при других вычислениях (например, диаметра паропровода) – даже с шестой степенью. Исследуя силу, с какой текучая вода увлекает камни, гидротехник наталкивается на зависимость также шестой степени: если скорость течения в одной реке вчетверо больше, чем в другой, то быстрая река способна перекатывать по своему ложу камни в 46, т. е. в 4096 раз более тяжелые, чем медленная[58].

С еще более высокими степенями встречаемся мы, изучая зависимость яркости раскаленного тела – например, нити накала в электрической лампочке – от температуры. Общая яркость растет при белом калении с двенадцатой степенью температуры, а при красном – с тридцатой степенью температуры («абсолютной», т. е. считаемой от минус 273°). Это означает, что тело, нагретое, например, от 2000° до 4000° (абсолютных), т. е. в два раза сильнее, становится ярче в 212, иначе говоря, более чем в 4000 раз.

Астрономические числа

Никто, пожалуй, не пользуется так широко пятым математическим действием, как астрономы. Исследователям Вселенной на каждом шагу приходится встречаться с огромными числами, состоящими из одной-двух значащих цифр и длинного ряда нулей.

Изображение обычным образом подобных числовых исполинов, справедливо называемых «астрономическими числами», неизбежно вело бы к большим неудобствам, особенно при вычислениях. Расстояние, например, до туманности Андромеды, написанное обычным порядком, представляется таким числом километров:

95 000 000 000 000 000 000.

При выполнении астрономических расчетов приходится к тому же выражать зачастую небесные расстояния не в километрах или более крупных единицах, а в сантиметрах. Рассмотренное расстояние изобразится в этом случае числом, имеющим на пять нулей больше:

9 500 000 000 000 000 000 000 000.

Массы звезд выражаются еще большими числами, особенно если их выражать, как требуется для многих расчетов, в граммах. Масса нашего Солнца в граммах равна:

1 983 000 000 000 000 000 000 000 000 000 000.

Легко представить себе, как затруднительно было бы производить вычисления с такими громоздкими числами и как легко было бы при этом ошибиться. А ведь здесь приведены далеко еще не самые большие астрономические числа.

Пятое математическое действие дает вычислителям простой выход из этого затруднения. Единица, сопровождаемая рядом нулей, представляет собой определенную степень десяти:

100 = 102, 1000 = 103, 10 0 00 = 104 и т. д.

Приведенные раньше числовые великаны могут быть поэтому представлены в таком виде:

первый……… 950 · 1023

второй……… 1983 · 1030

Делается это не только для сбережения места, но и для облегчения расчетов. Если бы потребовалось, например, оба эти числа перемножить, то достаточно было бы найти произведение 95 · 1983 = 188 385 и поставить его впереди множителя 1023+30= 1053:

950 · 1023 · 1983 · 1030 = 188 385 · 1053.

Это, конечно, гораздо удобнее, чем выписывать сначала число с 21 нулем, затем с 30 и, наконец, с 53 нулями, – не только удобнее, но и надежнее, так как при писании десятков нулей можно проглядеть один-два нуля и получить неверный результат.

Сколько весит весь воздух

Чтобы убедиться, насколько облегчаются практические вычисления при пользовании степенным изображением больших чисел, выполним такой расчет: определим, во сколько раз масса земного шара больше массы всего окружающего его воздуха.

На каждый кв. сантиметр земной поверхности воздух давит, мы знаем, с силой около килограмма. Это означает, что вес того столба атмосферы, который опирается на 1 кв. см, равен 1 кг. Атмосферная оболочка Земли как бы составлена вся из таких воздушных столбов; их столько, сколько кв. сантиметров содержит поверхность нашей планеты; столько же килограммов весит вся атмосфера. Заглянув в справочник, узнаем, что величина поверхности земного шара равна 510 млн. кв. км, т. е. 51·107 кв. км.

Рассчитаем, сколько квадратных сантиметров в квадратном километре. Линейный километр содержит 1000 м, по 100 см в каждом, т. е. равен 105 см, а кв. километр содержит (105)2 = 1010кв. сантиметров. Во всей поверхности земного шара заключается поэтому:

51·107 -1010 = 51·1017

кв. сантиметров. Столько же килограммов весит и атмосфера Земли. Переведя в тонны, получим:

51·1017: 1000 = 51·1017: 103 = 51·1017-3 = 51·1014.

Масса же земного шара выражается числом:

6 · 1021 тонн.

Чтобы определить, во сколько раз наша планета тяжелее ее воздушной оболочки, производим деление:

6 · 1021:51·1014 ≈ 106,

т. е. масса атмосферы составляет примерно миллионную долю массы земного шара.

Горение без пламени и жара

Если вы спросите у химика, почему дрова или уголь горят только при высокой температуре, он скажет вам, что соединение углерода с кислородом происходит, строго говоря, при всякой температуре, но при низких температурах процесс этот протекает чрезвычайно медленно (т. е. в реакцию вступает весьма незначительное число молекул) и потому ускользает от нашего наблюдения. Закон, определяющий скорость химических реакций, гласит, что с понижением температуры на 10° скорость реакции (число участвующих в ней молекул) уменьшается в два раза.

Применим сказанное к реакции соединения древесины с кислородом, т. е. к процессу горения дров. Пусть при температуре пламени 600° сгорает ежесекундно 1 грамм древесины. Во сколько времени сгорит 1 грамм дерева при 20°? Мы уже знаем, что при температуре, которая на 580 = 58–10 градусов ниже, скорость реакции меньше в

258 раз,

т. е. 1 грамм дерева сгорит в 258 секунд.

Скольким годам равен такой промежуток времени? Мы можем приблизительно подсчитать это, не производя 57 повторных умножений на два и обходясь без логарифмических таблиц. Воспользуемся тем, что

210= 1024 ≈ 103.

Следовательно,

т. е. около четверти триллиона секунд. В году около 30 млн., т. е. 3·107, секунд; поэтому

Десять миллиардов лет! Вот во сколько примерно времени сгорел бы грамм дерева без пламени и жара.

Итак, дерево, уголь горят и при обычной температуре, не будучи вовсе подожжены. Изобретение орудий добывания огня ускорило этот страшно медленный процесс в миллиарды раз.

Разнообразие погоды

ЗАДАЧА

Будем характеризовать погоду только по одному признаку, – покрыто ли небо облаками или нет, т. е. станем различать лишь дни ясные и пасмурные. Как вы думаете, много ли при таком условии возможно недель с различным чередованием погоды?

Казалось бы, немного: пройдет месяца два, и все комбинации ясных и пасмурных дней в неделе будут исчерпаны; тогда неизбежно повторится одна из тех комбинаций, которые уже наблюдались прежде.

Попробуем, однако, точно подсчитать, сколько различных комбинаций возможно при таких условиях. Это – одна из задач, неожиданно приводящих к пятому математическому действию.

Итак: сколькими различными способами могут на одной неделе чередоваться ясные и пасмурные дни?

РЕШЕНИЕ

Первый день недели может быть либо ясный, либо пасмурный; имеем, значит, пока две «комбинации».

В течение двухдневного периода возможны следующие чередования ясных и пасмурных дней:

ясный и ясный

ясный и пасмурный

пасмурный и ясный

пасмурный и пасмурный.

Итого в течение двух дней 22 различного рода чередований. В трехдневный промежуток каждая из четырех комбинаций первых двух дней сочетается с двумя комбинациями третьего дня; всех родов чередований будет

22 · 2 = 23.

В течение четырех дней число чередований достигнет

23 · 2 = 24.

За пять дней возможно 25, за шесть дней 26 и, наконец, за неделю 27= 128 различного рода чередований.

Отсюда следует, что недель с различным порядком следования ясных и пасмурных дней имеется 128. Спустя 128 · 7 = 896 дней непременно должно повториться одно из прежде бывших сочетаний; повторение, конечно, может случиться и раньше, но 896 дней – срок, по истечении которого такое повторение неизбежно. И обратно: может пройти целых два года, даже больше (2 года и 166 дней), в течение которых ни одна неделя по погоде не будет похожа на другую.


Замо́к с секретом

ЗАДАЧА

В одном советском учреждении обнаружен был несгораемый шкаф, сохранившийся с дореволюционных лет. Отыскался и ключ к нему, но чтобы им воспользоваться, нужно было знать секрет замка; дверь шкафа открывалась лишь тогда, когда имевшиеся на двери 5 кружков с алфавитом на их ободах (36 букв) устанавливались на определенное слово. Так как никто этого слова не знал, то, чтобы не взламывать шкафа, решено было перепробовать все комбинации букв в кружках. На составление одной комбинации требовалось 3 секунды времени.

Можно ли надеяться, что шкаф будет открыт в течение ближайших 10 рабочих дней?

РЕШЕНИЕ

Подсчитаем, сколько всех буквенных комбинаций надо было перепробовать.

Каждая из 36 букв первого кружка может сопоставляться с каждой из 36 букв второго кружка. Значит, двухбуквенных комбинаций возможно

36 · 36 = 362.

К каждой из этих комбинаций можно присоединить любую из 36 букв третьего кружка. Поэтому трехбуквенных комбинаций возможно

362 · 36 = 363.

Таким же образом определяем, что четырехбуквенных комбинаций может быть 364, а пятибуквенных 365, или 60 466 176. Чтобы составить эти 60 с лишним миллионов комбинаций, потребовалось бы времени, считая по 3 секунды на каждую,

3 · 60 466 176 = 181 398 528

секунд. Это составляет более 50 000 часов, или почти 6300 восьмичасовых рабочих дней – более 20 лет.

Значит, шансов на то, что шкаф будет открыт в течение ближайших 10 рабочих дней, имеется 10 на 6300, или один из 630. Это очень малая вероятность.


Итоги повторного удвоения

Разительный пример чрезвычайно быстрого возрастания самой маленькой величины при повторном ее удвоении дает общеизвестная легенда о награде изобретателю шахматной игры[59]. Не останавливаясь на этом классическом примере, приведу другие, не столь широко известные.

ЗАДАЧА

Инфузория парамеция каждые 27 часов (в среднем) делится пополам. Если бы все нарождающиеся таким образом инфузории оставались в живых, то сколько понадобилось бы времени, чтобы потомство одной парамеции заняло объем, равный объему Солнца?

Данные для расчета: 40-е поколение парамеций, не погибающих после деления, занимает в объеме 1 куб. м; объем Солнца примем равным 1027 куб. м.


РЕШЕНИЕ

Задача сводится к тому, чтобы определить, сколько раз нужно удваивать 1 куб. м, чтобы получить объем в 1027 куб. м. Делаем преобразования:

1027 = (103)9 ≈ (210)9 = 290,

так как 210 ≈ 1000.

Значит, сороковое поколение должно претерпеть еще 90 делений, чтобы вырасти до объема Солнца. Общее число поколений, считая от первого, равно 40 + 90 = 130. Легко сосчитать, что это произойдет на 147-е сутки.

Заметим, что фактически одним микробиологом (Метальниковым) наблюдалось 8061 деление парамеции. Предоставляю читателю самому рассчитать, какой колоссальный объем заняло бы последнее поколение, если бы ни одна инфузория из этого количества не погибла…

Вопрос, рассмотренный в этой задаче, можно предложить, так сказать, в обратном виде.

Вообразим, что наше Солнце разделилось пополам, половина также разделилась пополам и т. д. Сколько понадобится таких делений, чтобы получились частицы величиной с инфузорию?

Хотя ответ уже известен читателям – 130, он все же поражает своею несоразмерной скромностью.

Мне предложили ту же задачу в такой форме.

Листок бумаги разрывают пополам, одну из полученных половин снова делят пополам и т. д. Сколько понадобится делений, чтобы получить частицы атомных размеров?

Допустим, что бумажный лист весит 1 г, и примем для веса атома величину порядка

. Так как в последнем выражении можно заменить 1024 приближенно равным ему выражением 280, то ясно, что делений пополам потребуется всего 80, а вовсе не миллионы, как приходится иногда слышать в ответ на вопрос этой задачи.


Тремя двойками

Всем, вероятно, известно, как следует написать три цифры, чтобы изобразить ими возможно большее число. Надо взять три девятки и расположить их так:

т. е. написать третью «сверхстепень» от 9.

Число это столь чудовищно велико, что никакие сравнения не помогают уяснить себе его грандиозность. Число электронов видимой Вселенной ничтожно по сравнению с ним. В моей «Занимательной арифметике» (глава десятая) уже говорилось об этом. Возвращаюсь к этой задаче лишь потому, что хочу предложить здесь по ее образцу другую.

Тремя двойками, не употребляя знаков действий, написать возможно большее число.

РЕШЕНИЕ

Под свежим впечатлением трехъярусного расположения девяток вы, вероятно, готовы дать и двойкам такое же расположение:

Однако на этот раз ожидаемого эффекта не получается. Написанное число невелико – меньше даже, чем 222. В самом деле: ведь мы написали всего лишь 24, т. е. 16.

Подлинно наибольшее число из трех двоек – не 222 и не 222 (т. е. 484), а

222 = 4 194 304.


Пример очень поучителен. Он показывает, что в математике опасно поступать по аналогии; она легко может повести к ошибочным заключениям.

Тремя тройками

ЗАДАЧА

Теперь, вероятно, вы осмотрительнее приступите к решению следующей задачи.

Тремя тройками, не употребляя знаков действий, написать возможно большее число.

РЕШЕНИЕ

Трехъярусное расположение и здесь не приводит к ожидаемому эффекту, так как

Последнее расположение и дает ответ на вопрос задачи.


Тремя четверками

ЗАДАЧА

Тремя четверками, не употребляя знаков действий, написать возможно большее число.

РЕШЕНИЕ

Если в данном случае вы поступите по образцу двух предыдущих задач, т. е. дадите ответ

444,

то ошибетесь, потому что на этот раз трехъярусное расположение

как раз дает большее число. В самом деле, 44 = 256, а 4256 больше, чем 444.


Тремя одинаковыми цифрами

Попытаемся углубиться в это озадачивающее явление и установить, почему одни цифры порождают числовые исполины при трехъярусном расположении, другие – нет. Рассмотрим общий случай.

Тремя одинаковыми цифрами, не употребляя знаков действий, изобразить возможно большее число. Обозначим цифру буквой а. Расположению

222, 333, 444

соответствует написание

а 10 а + а , т. е. а 11 а .

Расположение же трехъярусное представится в общем виде так:

Определим, при каком значении а последнее расположение изображает большее число, нежели первое. Так как оба выражения представляют степени с равными целыми основаниями, то бо́льшая величина отвечает большему показателю. Когда же

аа>11а?

Разделим обе части неравенства на а. Получим:

аа-1>11.

Легко видеть, что аа-1 больше 11 только при условии, что а больше 3, потому что

44–1 > 11,

между тем как степени

З2 и 21

меньше 11.

Теперь понятны те неожиданности, с которыми мы сталкивались при решении предыдущих задач: для двоек и троек надо было брать одно расположение, для четверок и больших чисел – другое.


Четырьмя единицами

ЗАДАЧА

Четырьмя единицами, не употребляя никаких знаков математических действий, написать возможно большее число.

РЕШЕНИЕ

Естественно приходящее на ум число – 1111 – не отвечает требованию задачи, так как степень

1111

во много раз больше. Вычислять это число десятикратным умножением на 11 едва ли у кого хватит терпения. Но можно оценить его величину гораздо быстрее с помощью логарифмических таблиц.

Число это превышает 285 миллиардов и, следовательно, больше числа 1111 в 25 с лишним млн. раз.


Четырьмя двойками

ЗАДАЧА

Сделаем следующий шаг в развитии задач рассматриваемого рода и поставим наш вопрос для четырех двоек.

При каком расположении четыре двойки изображают наибольшее число?

РЕШЕНИЕ

Возможны 8 комбинаций:

Какое же из этих чисел наибольшее?

Займемся сначала верхним рядом, т. е. числами в двухъярусном расположении.

Первое – 2222, – очевидно меньше трех прочих. Чтобы сравнить следующие два —

2222 и 2222,

преобразуем второе из них:

2222 = 22211 = (222)11 = 48411.

Последнее число больше, нежели 2222, так как и основание, и показатель у степени 48411 больше, чем у степени 2222.

Сравним теперь 2222 с четвертым числом первой строки – с 2222. Заменим 2222 большим числом 3222 и покажем, что даже это большее число уступает по величине числу 2222. В самом деле,

3222=(25)22= 2110

– степень меньшая, нежели 2222.

Итак, наибольшее число верхней строки – 2222. Теперь нам остается сравнить между собой пять чисел – сейчас полученное и следующие четыре:

Последнее число, равное всего 216, сразу выбывает из состязания. Далее, первое число этого ряда, равное 224 и меньшее, чем 324 или 220, меньше каждого из двух следующих. Подлежат сравнению, следовательно, три числа, каждое из которых есть степень 2. Больше, очевидно, та степень 2, показатель которой больше. Но из трех показателей

222,484 и 220+2 (=210·2·22 ≈ 106·4)


последний – явно наибольший.

Поэтому наибольшее число, какое можно изобразить четырьмя двойками, таково:

Не обращаясь к услугам логарифмических таблиц, мы можем составить себе приблизительное представление о величине этого числа, пользуясь приближенным равенством

210 ≈ 1000.


В самом деле,

Итак, в этом числе – свыше миллиона цифр.


Искусство отгадывать числа

Каждый из вас, несомненно, встречался с «фокусами» по отгадыванию чисел. Фокусник обычно предлагает выполнить действия следующего характера: задумай число, прибавь 2, умножь на 3, отними 5, отними задуманное число и т. д. – всего пяток, а то и десяток действий. Затем фокусник спрашивает, что у вас получилось в результате, и, получив ответ, мгновенно сообщает задуманное вами число.

Секрет «фокуса», разумеется, очень прост, и в основе его лежат все те же уравнения.

Пусть, например, фокусник предложил вам выполнить программу действий, указанную в левой колонке следующей таблицы:

Затем фокусник просит вас сообщить окончательный результат и, получив его, моментально называет задуманное число. Как он это делает?

Чтобы понять это, достаточно обратиться к правой колонке таблицы, где указания фокусника переведены на язык алгебры. Из этой колонки видно, что если вы задумали какое-то число х, то после всех действий у вас должно получиться 4х + 1. Зная это, нетрудно «отгадать» задуманное число.

Пусть, например, вы сообщили фокуснику, что получилось 33. Тогда фокусник быстро решает в уме уравнение 4х + 1 = 33 и находит: х = 8. Иными словами, от окончательного результата надо отнять единицу (33 – 1 = 32) и затем полученное число разделить на 4 (32: 4 = 8); это и дает задуманное число (8). Если же у вас получилось

25, то фокусник в уме проделывает действия 25 – 1 = 24, 24:4 = 6 и сообщает вам, что вы задумали 6.

Как видите, все очень просто: фокусник заранее знает, что надо сделать с результатом, чтобы получить задуманное число.

Поняв это, вы можете еще более удивить и озадачить ваших приятелей, предложив им самим, по своему усмотрению, выбрать характер действий над задуманным числом. Вы предлагаете приятелю задумать число и производить в любом порядке действия следующего характера: прибавлять или отнимать известное число (скажем: прибавить 2, отнять 5 и т. д.), умножать[60] на известное число (на 2, на 3 и т. п.), прибавлять или отнимать задуманное число. Ваш приятель нагромождает, чтобы запутать вас, ряд действий. Например, он задумывает число 5 (этого он вам не сообщает) и, выполняя действия, говорит:

– Я задумал число, умножил его на 2, прибавил к результату 3, затем прибавил задуманное число; теперь я прибавил 1, умножил на 2, отнял задуманное число, отнял 3, еще отнял задуманное число, отнял 2. Наконец, я умножил результат на 2 и прибавил 3.

Решив, что уже совершенно вас запутал, он с торжествующим видом сообщает вам:

– Получилось 49.

К его изумлению вы немедленно сообщаете ему, что он задумал число 5.

Как вы это делаете? Теперь это уже достаточно ясно. Когда ваш приятель сообщает вам о действиях, которые он выполняет над задуманным числом, вы одновременно действуете в уме с неизвестным х Он вам говорит: «Я задумал число…», а вы про себя твердите: «значит, у нас есть х». Он говорит: «…умножил его на 2…» (и он в самом деле производит умножение чисел), а вы про себя продолжаете: «теперь 2х». Он говорит: «…прибавил к результату 3…», и вы немедленно следите: 2х + 3, и т. д. Когда он «запутал» вас окончательно и выполнил все те действия, которые перечислены выше, у вас получилось то, что указано в следующей таблице (левая колонка содержит то, что вслух говорит ваш приятель, а правая – те действия, которые вы выполняете в уме):

В конце концов вы про себя подумали: окончательный результат 8х + 9. Теперь он говорит: «У меня получилось 49». А у вас готово уравнение: 8х + 9 = 49. Решить его – пара пустяков, и вы немедленно сообщаете ему, что он задумал число 5.

Фокус этот особенно эффектен потому, что не вы предлагаете те операции, которые надо произвести над задуманным числом, а сам товарищ ваш «изобретает» их.

Есть, правда, один случай, когда фокус не удается. Если, например, после ряда операций вы (считая про себя) получили х + 14, а затем ваш товарищ говорит: «…теперь я отнял задуманное число; у меня получилось 14», то вы следите за ним: (х + 14) – х = 14 – в самом деле получилось 14, но никакого уравнения нет и отгадать задуманное число вы не в состоянии. Что же в таком случае делать? Поступайте так: как только у вас получается результат, не содержащий неизвестного х, вы прерываете товарища словами: «Стоп! Теперь я могу, ничего не спрашивая, сказать, сколько у тебя получилось: у тебя 14». Это уже совсем озадачит вашего приятеля – ведь он совсем ничего вам не говорил! И, хотя вы так и не узнали задуманное число, фокус получился на славу!

Вот пример (по-прежнему в левой колонке стоит то, что говорит ваш приятель):

В тот момент, когда у вас получилось число 12, т. е. выражение, не содержащее больше неизвестного х, вы и прерываете товарища, сообщив ему, что теперь у него получилось 12.

Немного поупражнявшись, вы легко сможете показывать своим приятелям такие «фокусы».

Уравнение думает за нас

Если вы сомневаетесь в том, что уравнение бывает иной раз предусмотрительнее нас самих, решите следующую задачу.

Отцу 32 года, сыну 5 лет. Через сколько лет отец будет в 10 раз старше сына?

Обозначим искомый срок через х. Спустя х лет отцу будет 32 + х лет, сыну 5 + х. И так как отец должен тогда быть в 10 раз старше сына, то имеем уравнение

32 + х= 10– (5 +х).

Решив его, получаем х = —2.

«Через минус 2 года» означает «два года назад». Когда мы составляли уравнение, мы не подумали о том, что возраст отца никогда в будущем не окажется в 10 раз превосходящим возраст сына – такое соотношение могло быть только в прошлом. Уравнение оказалось вдумчивее нас и напомнило о сделанном упущении.

Цифры 1, 5 и 6

Вероятно, все заметили, что от перемножения ряда чисел, оканчивающихся единицей или пятеркой, получается число, оканчивающееся той же цифрой. Менее известно, что сказанное относится и к числу 6. Поэтому,

между прочим, всякая степень числа, оканчивающегося шестеркой, также оканчивается шестеркой. Например, 462 = 2116; 463 = 97 3 36.

Эту любопытную особенность цифр 1, 5 и 6 можно обосновать алгебраическим путем. Рассмотрим ее для 6.

Числа, оканчивающиеся шестеркой, изображаются так:

10а + 6, 10 b + 6 и т. д.,

где а и b — целые числа.

Произведение двух таких чисел равно

100 ab + 60 b + 60а + 36 = 10 · (10 ab + + 6 а) + 30 + 6 = 10 · (10 ab + + + 3) + 6.

Как видим, произведение составляется из некоторого числа десятков и из цифры 6, которая, разумеется, должна оказаться на конце.

Тот же прием доказательства можно приложить к

1 и к 5.

Сказанное дает нам право утверждать, что, например,

Числа 25 и 76

Имеются и двузначные числа, обладающие тем же свойством, как и числа 1, 5 и 6. Это число 25 и – что, вероятно, для многих будет неожиданностью, – число 76. Всякие два числа, оканчивающиеся на 76, дают в произведении число, оканчивающееся на 76.

Докажем это. Общее выражение для подобных чисел таково:

100а + 76, 1006 + 76 и т. д.

Перемножим два числа этого вида; получим:

10 000 ab + 76006 + 7600а + 5776 = 10 000аб + 76006 + 7600а + 5700 + 76 = 100 · (100аб + 766 + 76а + 57) + 76.

Положение доказано: произведение будет оканчиваться числом 76.

Отсюда следует, что всякая степень числа, оканчивающегося на 76, есть подобное же число:

3762= 14 1 376, 5763= 191 102 9 76 и т. п.

Бесконечные «числа»

Существуют и более длинные группы цифр, которые, находясь на конце чисел, сохраняются и в их произведении. Число таких групп цифр, как мы покажем, бесконечно велико.

Мы знаем двузначные группы цифр, обладающие этим свойством: это 25 и 76. Для того чтобы найти трехзначные группы, нужно приписать к числу 25 или 76 спереди такую цифру, чтобы полученная трехзначная группа цифр тоже обладала требуемым свойством.

Какую же цифру следует приписать к числу 76? Обозначим ее через к. Тогда искомое трехзначное число изобразится:

100 k + 76.

Общее выражение для чисел, оканчивающихся этой группой цифр, таково:

1000а + 100А: + 76, 10006 + 100А: + 76 и т. д.

Перемножим два числа этого вида; получим:

1 000 000 ab + 100 000 ak + 100 000 bk + 76 000 a + 76 000 b + 10 000 k 2 + 15 200 k + 5776.

Все слагаемые, кроме двух последних, имеют на конце не менее трех нулей. Поэтому произведение оканчивается на 100£ + 76, если разность

15 200 k + 5776 – (100 k + 76) = 15 100 k + 5700 = 15 000 k + 5000 + 100 · ( k + 7)

делится на 1000. Это, очевидно, будет только при к= 3.

Итак, искомая группа цифр имеет вид 376. Поэтому и всякая степень числа 376 оканчивается на 376. Например:

3762= 14 1 376.

Если мы теперь захотим найти четырехзначную группу цифр, обладающую тем же свойством, то должны будем приписать к 376 еще одну цифру спереди. Если эту цифру обозначим через l , то придем к задаче: при каком l произведение

(10 000а + 1000 l + 376) · (10 000b + 1000 l + 376)

оканчивается на 1000 l + 376? Если в этом произведении раскрыть скобки и отбросить все слагаемые, которые оканчиваются на четыре нуля и более, то останутся члены

752 000 l + 141 376.

Произведение оканчивается на 1000 l + 376, если разность

752 000 l + 141 376 – (1000 l + 376) = 751 000 l + 141 000 = (750 000 l + 140 000) + 1000 · ( l + 1)

делится на 10 000. Это, очевидно, будет только при l = 9.

Искомая четырехзначная группа цифр 9376. Полученную четырехзначную группу цифр можно дополнить еще одной цифрой, для чего нужно рассуждать точно так же, как и выше. Мы получим 09 376. Проделав еще один шаг, найдем группу цифр 109 376, затем 7 109 376 и т. д.

Такое приписывание цифр слева можно производить неограниченное число раз. В результате мы получим «число», у которого бесконечно много цифр:

…7 109 376.

Подобные «числа» можно складывать и умножать по обычным правилам: ведь они записываются справа налево, а сложение и умножение («столбиком») также производятся справа налево, так что в сумме и произведении двух таких чисел можно вычислять одну цифру за другой – сколько угодно цифр.

Интересно, что написанное выше бесконечное «число» удовлетворяет, как это ни кажется невероятным, уравнению

х2 = х

В самом деле, квадрат этого «числа» (т. е. произведение его на себя) оканчивается на 76, так как каждый из сомножителей имеет на конце 76; по той же причине квадрат написанного «числа» оканчивается на 376; оканчивается на 9376 и т. д. Иначе говоря, вычисляя одну за другой цифры «числа» х2, где х =…7 109 376, мы будем получать те же цифры, которые имеются в числе х, так что х2 = х.

Мы рассмотрели группы цифр, оканчивающиеся на 76[61]. Если аналогичные рассуждения провести для групп цифр, оканчивающихся на 5, то мы получим такие группы цифр:

5, 25, 625, 0625, 90 625, 890 625, 2 890 625 и т. д.

В результате мы сможем написать еще одно бесконечное «число»

…2 890 625,

также удовлетворяющее уравнению х2=х. Можно было бы показать, что это бесконечное «число» «равно»

Полученный интересный результат на языке бесконечных «чисел» формулируется так: уравнение х2 = х имеет (кроме обычныхх = 0 их = 1) два «бесконечных» решения:

x=…l 109 376 их =…2 890 625,

а других решений (в десятичной системе счисления) не имеет.


Пифагоровы числа

Удобный и очень точный способ, употребляемый землемерами для проведения на местности перпендикулярных линий, состоит в следующем. Пусть через точку А требуется к прямой MN провести перпендикуляр (рис. 1). Откладывают от А по направлению AM три раза какое-нибудь расстояние а. Затем завязывают на шнуре три узла, расстояния между которыми равны 4 а и 5а. Приложив крайние узлы к точкам А и В, натягивают шнур за средний узел. Шнур расположится треугольником, в котором угол А — прямой.

Рис. 1

Этот древний способ, по-видимому, применявшийся еще тысячелетия назад строителями египетских пирамид, основан на том, что каждый треугольник, стороны которого относятся, как 3:4:5, согласно общеизвестной теореме Пифагора, – прямоугольный, так как

32+ 42= 52.

Кроме чисел 3, 4, 5 существует, как известно, бесчисленное множество целых положительных чисел а, Ь, с, удовлетворяющих соотношению

а2 + Ь2 = с2.

Они называются пифагоровыми числами. Согласно теореме Пифагора такие числа могут служить длинами сторон некоторого прямоугольного треугольника; поэтому а и b называют «катетами», а с — «гипотенузой».

Ясно, что если а, Ь, с есть тройка пифагоровых чисел, то и pa, pb, рс, где р — целочисленный множитель, – пифагоровы числа. Обратно, если пифагоровы числа имеют общий множитель, то на этот общий множитель можно их все сократить, и снова получится тройка пифагоровых чисел…


Сто тысяч за доказательство теоремы

Одна задача из области неопределенных уравнений приобрела громкую известность, так как за правильное ее решение было завещано целое состояние: 100 000 немецких марок!

Задача состоит в том, чтобы доказать следующее положение, носящее название теоремы, или «великого предложения» Ферма.

Сумма одинаковых степеней двух целых чисел не может быть той же степенью какого-либо третьего целого числа. Исключение составляет лишь вторая степень, для которой это возможно.

Иначе говоря, надо доказать, что уравнение

xn + yn = zn

неразрешимо в целых числах для п > 2. Поясним сказанное. Мы видели, что уравнения

x 2 + y 2 = z 2,

x 3 + y 3 + z 3 = t 3

имеют сколько угодно целочисленных решений. Но попробуйте подыскать три целых положительных числа, для которых было бы выполнено равенство x 3 + y 3 + z 3 ваши поиски останутся тщетными.

Тот же неуспех ожидает вас и при подыскании примеров для четвертой, пятой, шестой и т. д. степеней. Это и утверждает «великое предложение Ферма́».

Что же требуется от соискателей премии? Они должны доказать это положение для всех тех степеней, для которых оно верно. Дело в том, что теорема Ферма еще не доказана и висит, так сказать, в воздухе[62].

Величайшие математики трудились над этой проблемой, однако в лучшем случае им удавалось доказать теорему лишь для того или иного отдельного показателя или для групп показателей, необходимо же найти общее доказательство для всякого целого показателя.

Замечательно, что неуловимое доказательство теоремы Ферма, по-видимому, однажды уже было найдено, но затем вновь утрачено. Автор теоремы, гениальный математик XVII в. Пьер Ферма[63], утверждал, что ее доказательство ему известно. Свое «великое предложение» он записал (как и ряд других теорем из теории чисел) в виде заметки на полях сочинения Диофанта, сопроводив его такой припиской:

«Я нашел поистине удивительное доказательство этого предложения, но здесь мало места, чтобы его привести».

Ни в бумагах великого математика, ни в его переписке, нигде вообще в другом месте следов этого доказательства найти не удалось.

Последователям Ферма́ пришлось идти самостоятельным путем.

Вот результаты этих усилий: Эйлер (1797) доказал теорему Ферма́ для третьей и четвертой степеней; для пятой степени ее доказал Лежандр (1823), для седьмой[64] – Ламе и Лебег (1840). В 1849 г. Куммер доказал теорему для обширной группы степеней и, между прочим, – для всех показателей, меньших ста. Эти последние работы далеко выходят за пределы той области математики, какая знакома была Ферма, и становится загадочным, как мог последний разыскать общее доказательство своего «великого предложения». Впрочем, возможно, он ошибался.

Интересующимся историей и современным состоянием задачи Ферма́ можно рекомендовать брошюру А.Я. Хинчина «Великая теорема Ферма». Написанная специалистом, брошюра эта предполагает у читателя лишь элементарные знания из математики.


Шестое действие

Сложение и умножение имеют по одному обратному действию, которые называются вычитанием и делением. Пятое математическое действие – возведение в степень – имеет два обратных: разыскание основания и разыскание показателя. Разыскание основания есть шестое математическое действие и называется извлечением корня. Нахождение показателя – седьмое действие – называется логарифмированием. Причину того, что возведение в степень имеет два обратных действия, в то время как сложение и умножение – только по одному, понять нетрудно: оба слагаемых (первое и второе) равноправны, их можно поменять местами; то же верно относительно умножения; однако числа, участвующие в возведении в степень, т. е. основание и показатель степени, неравноправны между собой; переставить их, вообще говоря, нельзя (например, З5 ≠ 53). Поэтому разыскание каждого из чисел, участвующих в сложении и умножении, производится одинаковыми приемами, а разыскание основания степени и показателя степени выполняется различным образом.

Алгебраические комедии

ЗАДАЧА 1

Шестое математическое действие дает возможность разыгрывать настоящие алгебраические комедии и фарсы на такие сюжеты, как 2–2 = 5,2 = 3 и т. п. Юмор подобных математических представлений кроется в том, что ошибка – довольно элементарная – несколько замаскирована и не сразу бросается в глаза. Исполним две пьесы этого комического репертуара из области алгебры.

Первая:

2 = 3.

На сцене сперва появляется неоспоримое равенство 4-10 = 9-15.

В следующем «явлении» к обеим частям равенства прибавляется по равной величине

:

Дальнейший ход комедии состоит в преобразованиях:

Извлекая из обеих частей равенства квадратный корень, получают:

Прибавляя по

 к обеим частям, приходят к нелепому равенству


2 = 3.

В чем же кроется ошибка?


РЕШЕНИЕ

Ошибка проскользнула в следующем заключении: из того, что

был сделан вывод, что

Но из того, что квадраты равны, вовсе не следует, что равны первые степени. Ведь (—5)2 = 52, но —5 не равно 5. Квадраты могут быть равны и тогда, когда первые степени разнятся знаками. В нашем примере мы имеем именно такой случай:

но

 не равно


.


ЗАДАЧА 2

Другой алгебраический фарс (рис. 2)

2-2 = 5

разыгрывается по образцу предыдущего и основан на том же трюке. На сцене появляется не внушающее сомнения равенство

16 – 36 = 25–45.

Рис. 2


Прибавляются равные числа:

и делаются следующие преобразования:

Затем с помощью того же незаконного заключения переходят к финалу:

4 = 5,

2 · 2 = 5.


Эти комические случаи должны предостеречь малоопытного математика от неосмотрительных операций с уравнениями, содержащими неизвестное под знаком корня.

Предусмотрительность уравнений

…Приведем пример, когда уравнение оказывается словно предусмотрительнее того, кто его составил.

Мяч брошен вверх со скоростью 25 м в секунду. Через сколько секунд он будет на высоте 20 м над землей?

РЕШЕНИЕ

Для тел, брошенных вверх при отсутствии сопротивления воздуха, механика устанавливает следующее соотношение между высотой подъема тела над землей ( h ), начальной скоростью ( v ), ускорением тяжести ( g ) и временем ( t ):

Сопротивлением воздуха мы можем в данном случае пренебречь, так как при незначительных скоростях оно не столь велико. Ради упрощения расчетов примем g равным не 9,8 м, а 10 м (ошибка всего в 2 %). Подставив в приведенную формулу значения h, v и g, получаем уравнение

а после упрощения


t 2 − 5 t + 4 = 0. Решив уравнение, имеем:

t 1 = 1 и t 2 = 4.

Мяч будет на высоте 20 м дважды: через 1 секунду и через 4 секунды.

Это может, пожалуй, показаться невероятным, и, не вдумавшись, мы готовы второе решение отбросить. Но так поступить было бы ошибкой! Второе решение имеет полный смысл; мяч должен действительно дважды побывать на высоте 20 м: раз при подъеме и вторично при обратном падении. Легко рассчитать, что мяч при начальной скорости 25 м в секунду должен лететь вверх 2.5 секунды и залететь на высоту 31,25 м. Достигнув через 1 секунду высоты 20 м, мяч будет подниматься еще 1.5 секунды, затем столько же времени опускаться вниз снова до уровня 20 м и, спустя секунду, достигнет земли.


Седьмое действие

Мы упоминали уже, что пятое действие – возвышение в степень – имеет два обратных. Если

аb = с ,

то разыскание а есть одно обратное действие – извлечение корня; нахождение же b — другое, логарифмирование. Полагаю, что читатель этой книги знаком с основами учения о логарифмах в объеме школьного курса. Для него, вероятно, не составит труда сообразить, чему, например, равно такое выражение:

Нетрудно понять, что если основание логарифмов а возвысить в степень логарифма числа b , то должно получиться это число b .

Для чего были придуманы логарифмы? Конечно, для ускорения и упрощения вычислений. Изобретатель первых логарифмических таблиц, Непер, так говорит о своих побуждениях:


«Я старался, насколько мог и умел, отделаться от трудности и скуки вычислений, докучность которых обычно отпугивает весьма многих от изучения математики».

В самом деле, логарифмы чрезвычайно облегчают и ускоряют вычисления, не говоря уже о том, что они дают возможность производить такие операции, выполнение которых без их помощи очень затруднительно (извлечение корня любой степени).

Не без основания писал Лаплас, что «изобретение логарифмов, сокращая вычисления нескольких месяцев в труд нескольких дней, словно удваивает жизнь астрономов». Великий математик говорит об астрономах, так как им приходится делать особенно сложные и утомительные вычисления. Но слова его с полным правом могут быть отнесены ко всем вообще, кому приходится иметь дело с числовыми выкладками.

Нам, привыкшим к употреблению логарифмов и к доставляемым ими облегчениям выкладок, трудно представить себе то изумление и восхищение, которое вызвали они при своем появлении. Современник Непера, Бригг, прославившийся позднее изобретением десятичных логарифмов, писал, получив сочинение Непера: «Своими новыми и удивительными логарифмами Непер заставил меня усиленно работать и головой и руками. Я надеюсь увидеть его летом, так как никогда не читал книги, которая нравилась бы мне больше и приводила бы в большее изумление». Бригг осуществил свое намерение и направился в Шотландию, чтобы посетить изобретателя логарифмов. При встрече Бригг сказал:

«Я предпринял это долгое путешествие с единственной целью видеть вас и узнать, помощью какого орудия остроумия и искусства были вы приведены к первой мысли о превосходном пособии для астрономии – логарифмах. Впрочем, теперь я больше удивляюсь тому, что никто не нашел их раньше, – настолько кажутся они простыми после того, как о них узнаешь».


Логарифмы на эстраде

Самый поразительный из номеров, выполняемых перед публикой профессиональными счетчиками, без сомнения, следующий. Предуведомленные афишей, что счетчик-виртуоз будет извлекать в уме корни высоких степеней из многозначных чисел, вы заготовляете дома путем терпеливых выкладок 31-ю степень какого-нибудь числа и намерены сразить счетчика 35-значным числовым линкором. В надлежащий момент вы обращаетесь к счетчику со словами:

– А попробуйте извлечь корень 31-й степени из следующего 35-значного числа! Запишите, я продиктую.

Виртуоз-вычислитель берет мел, но прежде чем вы успели открыть рот, чтобы произнести первую цифру, у него уже написан результат: 13.

Не зная числа, он извлек из него корень, да еще 31-й степени, да еще в уме, да еще с молниеносной быстротой!..

Вы изумлены, уничтожены, а между тем во всем этом нет ничего сверхъестественного. Секрет просто в том, что существует только одно число, именно 13, которое в 31-й степени дает 35-значный результат. Числа, меньшие 13, дают меньше 35 цифр, большие – больше.

Откуда, однако, счетчик знал это? Как разыскал он число 13? Ему помогли логарифмы, двузначные логарифмы, которые он помнит наизусть для первых 15–20 чисел. Затвердить их вовсе не так трудно, как кажется, особенно если пользоваться тем, что логарифм составного числа равен сумме логарифмов его простых множителей. Зная твердо логарифмы 2, 3 и 7 (напомним, что

, вы уже знаете логарифмы чисел первого десятка; для второго десятка требуется помнить логарифмы еще четырех чисел.


Как бы то ни было, эстрадный вычислитель мысленно располагает следующей табличкой двузначных логарифмов.

Изумивший вас математический трюк состоял в следующем:

Искомый логарифм может заключаться между

В этом интервале имеется логарифм только одного целого числа, именно 1,11 – логарифм 13. Таким путем и найден ошеломивший вас результат. Конечно, чтобы быстро проделать все это в уме, надо обладать находчивостью и сноровкой профессионала, но, по существу, дело, как видите, достаточно просто. Вы и сами можете теперь проделывать подобные фокусы, если не в уме, то на бумаге.

Пусть вам предложена задача: извлечь корень 64-й степени из 20-значного числа.

Не осведомившись о том, что это за число, вы можете объявить результат извлечения: корень равен 2.

В самом деле

; он должен, следовательно, заключаться между 

и

, т. е. между 0,29 и 0,32. Такой логарифм для целого числа только один: 0,30…, т. е. логарифм числа 2.


Вы даже можете окончательно поразить загадчика, сообщив ему, какое число он собирался вам продиктовать: знаменитое «шахматное» число

264= 18 446 744 073 709 551 616.

Из книги «Занимательная арифметика. Загадки и диковинки в мире чисел»