Большое космическое путешествие — страница 34 из 97

С учетом поправки на наблюдательную селекцию данные «Кеплера» свидетельствуют, что примерно у каждой десятой солнечноподобной звезды (спектральные классы G и K) есть планета, сопоставимая по размеру с Землей (радиус такой планеты составляет 1–2 земных радиуса), причем интенсивность излучения, получаемого ею от звезды, составляет от 1/4 до четырехкратного уровня относительно аналогичного показателя для Земли. Таким образом, примерно у 10 % солнцеподобных звезд есть похожая на Землю планета, расположенная на расстоянии от 0,5 а.е. до 2 а.е. от своей звезды. Дело в том, что интенсивность излучения убывает по закону обратных квадратов. Планета, удаленная от звезды на 2 а.е., получает вчетверо меньше света, чем Земля, а планета, удаленная на 0,5 а.е., – вчетверо больше. Согласно данным «Кеплера», планеты, похожие на Землю, равномерно распределены по логарифму расстояний от своих звезд. Что это означает? Если взять все планеты, расположенные на расстоянии от 0,5 а.е. до 2 а.е. до звезды, то половина из них окажется на отрезке от 0,5 а.е. до 1 а.е., а другая половина – на отрезке от 1 а.е. до 2 а.е. Промежуток от 0,5 а.е. до 1 а.е. – множитель 2. Границы интервала от 0,5 а.е. до 1 а.е. различаются в 2 раза, интервала от 1 а.е. до 2 а.е. – тоже в 2 раза. На интервалы с одинаковым отношением границ приходится равное число планет. Планеты, расположенные на расстоянии 0,5 а.е. от звезды, могут быть обитаемы, если у них высокое альбедо и низкий парниковый эффект. Но если бы мы поместили на таком расстоянии от звезды нашу Землю, ее океаны бы вскипели. Аналогично, если отодвинуть Землю на расстояние 2 а.е., ее океаны замерзнут. Однако если бы на расстоянии 2 а.е. вращалась планета с низкой отражательной способностью и сильным парниковым эффектом, то она могла бы достаточно прогреваться, чтобы на ней существовала жизнь. Предел rмакс/rмин для конкретной планеты, обладающей конкретной отражательной способностью и конкретным парниковым эффектом, узок: 1,87. Теперь учтем, что 1,872,2 ≈ 4. Грубо говоря, надо 2,2 раза умножить на себя 1,87, чтобы получить 4 – отношение границ пригодного для жизни диапазона от 0,5 до 2 а.е. для звезды, похожей на Солнце. Если на эти отрезки «по 1,87» приходится примерно равное количество планет, то, случайным образом выбрав землеподобную планету где-то между 0, 5 и 2 а.е., то с вероятностью 1: 2,2 (или примерно 45 %) мы случайно попадем в диапазон rмакс/rмин = 1,87, в котором планета будет пригодна для жизни (при имеющейся отражательной способности и парниковом эффекте).

Если 20 % звезд в Галактике отвечают нужным критериям (это звезды спектральных классов G и K) и примерно у 10 % из этих звезд есть планеты, сопоставимые по размеру с Землей и получающие от 1/4 до 4-кратного количества излучения, достающегося Земле, и если около 45 % этих планет окажутся в зоне обитаемости (то есть на них будет жидкая вода при парниковом эффекте и отражательной способности, характерных для данной конкретной планеты), то доля fHP = 0,2 × 0,1 × 0,45 = 0,009.

Это упражнение вышло утомительным, но все-таки помогло прояснить многие вещи. Вооружившись математикой и астрофизикой, мы отыскиваем около звезд такие регионы, где можно было бы встретить жизнь, напоминающую земную.

Но чтобы планета входила в число таких кандидатов, должны соблюдаться и иные критерии. Так, на планете должна быть достаточно плотная атмосфера. Если планета невелика (сопоставима по размеру с Луной), то ее тяготение будет столь слабым, что молекулы газов при температуре 278 К просто улетучатся в космос и никакой атмосферы на планете не останется (вот почему у Луны своей атмосферы фактически нет). Но мы уже рассуждаем о таких планетах, чей радиус равен земному или вдвое больше, поэтому такие планеты должны хорошо удерживать атмосферу. Орбита планеты не должна обладать чрезмерным эксцентриситетом. Если орбита является кеплеровским эллипсом и обладает эксцентриситетом e, то отношение максимального расстояния между ней и звездой rмакс к минимальному расстоянию между ними rмин равно rмакс/rмин = (1 + e)/(1 – e). Аналогично можно утверждать, что e = ([rмакс/rмин] – 1)/(rмакс/rмин] + 1). В таком случае если орбита планеты – идеальная окружность, то e = 0. Если орбита очень вытянута, то значение e приближается к 1 (это действительно так для многих комет). Вы догадываетесь, к чему я клоню: нам не подходит планета, орбите которой соответствует значение rмакс/rмин> 1,87, ведь в таком случае ее океаны вымерзнут или выкипят. Таким образом, планета должна вращаться по орбите с эксцентриситетом e< 0,30, поскольку именно при таком условии она никогда не будет выходить за пределы зоны обитаемости (в противном случае драгоценная жидкая вода на ней замерзнет или выкипит). Если повстречаете инопланетянина, можете сказать ему: «Готов поспорить: эксцентриситет орбиты твоей родной планеты меньше 0,30». Вероятно, он будет изрядно впечатлен.

Эксцентриситет земной орбиты составляет всего 0,017. Это не случайно, ведь в таких условиях у нас хороший климат без резких перепадов. Вернее, не случайно, что мы развились на планете с таким небольшим эксцентриситетом орбиты. К счастью (для тех, кто ищет жизнь), орбиты большинства открытых «Кеплером» планет земного типа обладают очень небольшим эксцентриситетом. Зачастую такие миры встречаются в многопланетных системах, где в результате орбитальных взаимодействий между планетами эти орбиты постепенно округляются. Планета стабилизируется на орбите, которая достаточно удалена от орбит иных планет. «Кеплер» открыл, что в многопланетных системах период орбитального вращения каждой последующей планеты обычно превышает период орбитального вращения предыдущей как минимум вдвое. В соответствии с третьим законом Кеплера (P2 = a3) это означает, что орбита последующей планеты будет больше орбиты предшествующей в среднем как минимум в 22/3, или 1,6. Этот коэффициент близок к 1,87, отношению rмакс/rмин для планеты, расположенной в своей зоне обитаемости. Возможно, нам повезет, и мы найдем две планеты на более близких орбитах, либо найдем поближе к звезде планету с более высокой отражательной способностью и пониженным парниковым эффектом, либо найдем подальше от звезды планету с низкой отражательной способностью и сильным парниковым эффектом, но в среднем предполагается, что в большинстве звездных систем должна иметься максимум одна планета, пригодная для жизни.

Когда-то считалось, что в двойных звездных системах планеты существовать не могут. Поскольку более половины звезд в Галактике – двойные, можно было уменьшить количество систем-кандидатов вдвое. Но космический телескоп «Кеплер» нашел планеты в двойных звездных системах. Планета может быть обитаемой, если в системе присутствуют две звезды, похожие на Солнце и вращающиеся одна вокруг другой на расстоянии 0,1 а.е., а рассматриваемая планета удалена от них на √2а. е. = 1,41 а.е. Тогда планета будет получать столько же света, сколько и Земля. Просто в небе будет два солнца (как на планете Татуин из IV эпизода «Звездных войн»). Две звезды, расположенные так близко друг к другу, не нарушат динамику планеты. Но если в системе будет две похожие на Солнце звезды, расстояние между которыми составляет около 1 а.е., в этой системе будет сложно найти зону обитаемости, где могла бы существовать стабильная планетная орбита, поскольку планета будет постоянно попадать в зону преимущественного тяготения то к одной, то к другой звезде. Если же две звезды, похожие на Солнце, вращаются одна вокруг другой на расстоянии более 10 а.е., это, опять же, неплохо; планета может вращаться вокруг одной из звезд на расстоянии 1 а.е., а другая звезда будет светить вдалеке. Столь удаленные друг от друга звезды также не нарушат стабильность орбиты, и в подобной системе не будет слишком жарко. Разумеется, нечего делать и в системе с одной массивной звездой – она превратится в красный гигант много раньше, чем на планете успеет развиться разумная жизнь.

Три этих дополнительных фактора – атмосфера, эксцентриситет и сложности с двойными звездами – видимо, уменьшают вероятность того, что в зоне обитаемости звезды найдется планета, но и суммарно все они, пожалуй, не понижают fHP вдвое. Поэтому я бы уменьшил показатель fHP с 0,009 чуть ниже чем до ~0,006.

Когда Фрэнк Дрейк впервые выводил свое уравнение в 1960-е годы, еще не было известно ни одной экзопланеты. Поэтому значение fHP было просто версией. Но сегодня у нас есть данные, позволяющие уточнить эту оценку. Именно так и должно работать это уравнение. Оно стимулирует нас собирать данные и находить особенности.

Результат fHP ~ 0,006 воодушевляет. Посмотрим, что выясняется в таком случае. Ближайшая звезда удалена от нас на 4 световых года. Уйдем в 10 раз дальше – на 40 световых лет. Объем сферы радиусом 40 световых лет будет в 1000 раз больше, чем у сферы радиусом 4 световых года, и в этой большой сфере окажется около 1000 звезд. Если мы в среднем оцениваем fHP ~ 0,006, то в таком радиусе должно быть как минимум 6 потенциально обитаемых планет. Да, на расстоянии всего 40 световых лет от Солнца могут быть планеты, пригодные для жизни! То есть серии из первого сезона «Звездного пути», летящие во все стороны со скоростью света в виде электромагнитных волн, уже достигли какой-то жизнепригодной планеты, на поверхности которой есть жидкая вода.

В 1970-е годы Британское межпланетное общество провело исследование под названием «проект Дедал», в ходе которого проверялось, насколько возможны межзвездные перелеты. Был смоделирован двухъярусный корабль высотой 190 метров, работающий на термоядерном двигателе, заправленном 50 000 тонн дейтерия и гелия-3. Такой корабль примерно вдвое длиннее и в 16 раз массивнее ракеты «Сатурн V», доставившей астронавтов на Луну. Этот колоссальный корабль с термоядерной тягой мог бы развить скорость в 12 % от скорости света. Он мог бы нести 500 тонн полезной научной нагрузки, в том числе два пятиметровых оптических телескопа и два двадцатиметровых радиотелескопа. Такой корабль преодолел бы 40 световых лет за 333 года. Телеметрия с него достигла бы Земли еще за 40 лет – соответственно мы получили бы отклик от «Дедала» через 373 года.