Большое космическое путешествие — страница 45 из 97

Звук, издаваемый мотоциклом, – это упругая волна, распространяющаяся в воздухе, которая, как и свет, имеет определенную длину и частоту; чем выше частота (и чем меньше длина волны), тем выше будет звук, который мы услышим. Движущийся мотоцикл распространяет вокруг множество таких волновых гребней, и чем он ближе, тем теснее идут друг за другом гребни волн и тем выше звук. Напротив, когда мотоцикл удаляется, достигающие вас волны вытягиваются, и поэтому звук кажется ниже. Этот эффект, впервые описанный в 1842 году австрийцем Кристианом Доплером, действует для световых волн точно как для звуковых: движение далекой галактики или звезды проявляется в виде систематического сдвига волн в ее спектре. Таким образом, считается, что красное смещение галактик обусловлено доплеровским эффектом: галактики от нас удаляются. Относительное изменение длины волны, излучаемой объектом, равно скорости объекта, деленной на скорость звука (если речь идет о звуковых волнах) или на скорость света (если мы измеряем свет, идущий от некоторого объекта). Скорость звука в земной атмосфере равна примерно 1200 км/ч, и хороший мотоцикл вполне развивает десятую долю этой скорости. Соответственно звук проезжающего мимо мотоцикла успевает измениться по высоте примерно на 20 % (минус 10 % от скорости звука при приближении к вам и плюс 10 % при удалении) – довольно заметно, в музыке такой интервал называется «малая терция».

Оттенок света зависит от длины его волны, и удаляющийся от нас объект, световые волны которого удлиняются, будет казаться покрасневшим. Этот эффект будет заметен (как минимум невооруженным глазом) лишь при скоростях, сопоставимых со скоростью света. Мотоцикл развивает ничтожную долю скорости света, поэтому нам не кажется, что он краснеет, удаляясь от нас. Мы не видим, как вокруг с огромной скоростью проносятся звезды и галактики, но у них есть характерные черты – спектральные линии поглощения, присущие определенным химическим элементам, а длины волн, соответствующие этим линиям, с большой точностью измерены в лабораториях на Земле. Можно измерить аналогичные длины волн в конкретной звезде или галактике; разница между длинами волн этих элементов, наблюдаемыми на Земле и в звезде или галактике, трактуемая как доплеровское смещение, позволит судить, насколько быстро звезда или галактика удаляется от нас.

Около 1915 года Весто Слайфер, работавший в лаборатории Лоуэлла (где впоследствии был открыт Плутон), измерил доплеровское смещение 15 галактик. У галактики Андромеды и двух других галактик было синее смещение (оказалось, что эти галактики движутся к нам), а у всех остальных – красное, и, значит, эти галактики от нас удаляются. Красное смещение обозначается буквой z и вычисляется по формуле (набл – лаб)/ лаб, где лаб – это длина эмиссионной линии или линии поглощения у химического элемента, измеренная в лаборатории на Земле, а набл – это длина соответствующей линии того же элемента в спектре галактики. Красное смещение z ближней галактики относится к ее скорости удаления v по формуле zv/c. Следовательно, галактика со скоростью разбегания в 1 % скорости света будет иметь красное смещение z = 0,01, и длины волн всех спектральных линий в этой галактике будут увеличены на 1 %. Астрономическое сообщество уже успело измерить спектры более 2 миллионов галактик. Почти все они за редкими исключениями (среди которых – галактика Андромеды) демонстрируют красное смещение. Таким образом, практически все галактики во Вселенной удаляются от Млечного Пути. Как-то раз я видел глупую карикатуру, на которой изображен сумасшедший ученый у телескопа. Ученый воздевает руки к небу и говорит: «Ах, галактики разбегаются, потому что терпеть нас не могут!» Это неверное объяснение, но примечательно, что мы как будто занимаем особое положение, находимся в центре, от которого разлетаются все галактики. Что же происходит на самом деле? Именно Хаббл оказался тем человеком, кто вновь выполнил важнейшие измерения в конце 1920-х – начале 1930-х годов и помог прийти к современному пониманию этих красных смещений.

Измерив по переменным звездам-цефеидам расстояние до туманности Андромеды, Хаббл продолжил такую работу с другими галактиками, оценивая расстояние до них по различным параметрам. Чем дальше галактика, тем сложнее становится такая работа; в отдаленных галактиках все труднее различить отдельные звезды. По современным меркам, измерения Хаббла были грубыми, но к концу 1920-х годов он примерно определил расстояния до некоторых галактик, причем измерил не только расстояния, но и спектры, а следовательно, узнал их красные смещения и скорости. Он построил простой график, сравнив расстояния до галактик и их скорости. Тогда обнаружилась закономерность: чем дальше галактика, тем выше ее скорость. Действительно, несмотря на значительные погрешности при измерениях, Хаббл смог заключить, что скорость v и расстояние d, по-видимому, пропорциональны друг другу:

v = H0d.

Эта пропорциональная зависимость между скоростью и расстоянием сегодня известна под названием «закон Хаббла», а константа пропорциональности H0 теперь именуется в его честь постоянной Хаббла. Постоянная Хаббла действительно одинакова по всей Вселенной в любой момент времени, но, как мы увидим позднее, отличается в разные космические эпохи. Величина H0 – это постоянная Хаббла в настоящее время.

Сегодня, оглядываясь назад, примечательно, что Хаббл сумел выявить пропорциональное отношение между скоростью и расстоянием, располагая весьма некачественными данными (как вы помните, он недооценил расстояние до Галактики Андромеда в 2,5 раза). С 1929 года телескопы и научные методы значительно усовершенствовались. Действительно, один из ключевых проектов, реализованных на космическом телескопе «Хаббл», был посвящен точному расчету расстояний до галактик, и при работе, в частности, использовались замеры по цефеидам, на которые ориентировался и Хаббл. Измерения подтвердили правоту Хаббла и продемонстрировали, что красное смещение галактик и расстояние до них действительно в точности пропорциональны. Это было одно из поистине прорывных открытий, сделанных по неточным данным прямо на переднем крае науки и на пределе технологических возможностей своего времени. На первом графике Хаббла учитывались лишь галактики со скоростью v примерно 1000 км/c, до которых, по современным измерениям, около 50 миллионов световых лет. К 1931 году Хаббл и его коллега Милтон Хьюмасон расширили график, включив в него галактики со скоростью удаления до 20 000 км/с. На этом вопрос был окончательно закрыт.

На самом ли деле Млечный Путь занимает особое место во Вселенной – находится в точке, от которой разбегаются все галактики? Подобный феномен противоречил бы одной сквозной теме, к которой мы уже обращались; иногда ее называют принципом Коперника. Согласно этому принципу, Земля занимает во Вселенной ничем не примечательное место. Птолемей и другие древние ученые помещали Землю в центре Вселенной, но Коперник продемонстрировал, что Земля обращается вокруг Солнца. Впоследствии мы узнали, что Солнце – рядовая звезда главной последовательности. Хотя Каптейн и считал поначалу, что Солнце занимает особое место близ центра Млечного Пути, более точные исследования Шепли показали, что Солнце находится примерно на полпути от центра до края Галактики. На первый взгляд, замеры красного смещения поставили Млечный Путь в особое положение относительно других галактик – в ту самую точку, где находится центр расширения. Но на деле все не так.

Рассмотрим четыре галактики, расположенные через равные промежутки на одной линии: Галактика 1 находится слева, через 100 миллионов световых лет от нее располагается Млечный Путь, еще на 100 миллионов световых лет дальше находится Галактика 3, а еще на 100 миллионов световых лет дальше – Галактика 4 (то есть между ней и Галактикой 1 будет 300 миллионов световых лет). Согласно закону Хаббла, если наблюдать Млечный Путь из Галактики 1, он будет убегать от нее со скоростью 2000 км/c (см. первый набор стрелок на рис. 14.1). Галактика 3, расположенная от Галактики 1 в 2 раза дальше, чем Млечный Путь, будет убегать от нее со скоростью 4000 км/c, то есть вдвое быстрее, а Галактика 4, расположенная от Галактики 1 в 3 раза дальше, чем Млечный Путь, будет убегать со скоростью 6000 км/c. Как все это будет выглядеть из Млечного Пути? Рассмотрим второй набор стрелок. Мы удаляемся от Галактики 1 со скоростью 2000 км/c, но измеряем движение в нашей системе координат, поэтому видим, что Галактика 1 убегает от нас влево со скоростью 2000 км/c. При этом мы видим, что Галактика 3 улетает со скоростью 2000 км/c в противоположном направлении, вправо. Две эти галактики равноудалены от нас и улетают с одинаковой скоростью. Галактика 4 удаляется от нас с относительной скоростью 4000 км/c. Она вдвое дальше первых двух галактик, поэтому и удаляется от нас с удвоенной скоростью. Нам кажется, что все галактики от нас разбегаются, причем чем дальше галактика, тем выше ее скорость удаления. Наши наблюдения также согласуются с законом Хаббла.

Теперь рассмотрим эту ситуацию с точки зрения инопланетянина из Галактики 3. Доплеровское смещение позволяет судить только лишь об относительной скорости галактик. Инопланетянин видит на расстоянии 100 миллионов световых лет галактику Млечный Путь, которая удаляется (влево) со скоростью 2000 км/c. Галактика 4, удаленная от этого астронома на 100 миллионов световых лет в противоположную сторону, удаляется от него (в другую сторону) с относительной скоростью 2000 км/c. Наконец, Галактика 1 удаляется от него с относительной скоростью 4000 км/c. Инопланетянину кажется, что все галактики разбегаются в стороны, и он находится в центре, откуда происходит такое разбегание. Инопланетянин считает, что находится в покое и все галактики от него убегают, – точно к такому выводу пришли и мы, будучи в Млечном Пути.