азать, что движетесь. Ваш эксперимент должен дать тот же результат, что и эксперимент у меня в комнате. Следовательно, невозможно сконструировать ракету, развивающую сверхсветовую скорость. Странный результат, но с ним придется согласиться, если вы согласны с двумя постулатами. Если ракета летит медленнее скорости света, то лазерный луч рано или поздно попадет в ее носовую часть. На это может уйти немало времени, но, например, если ваши часы идут достаточно медленно, то все получится. Летать со субсветовой скоростью можно, но нельзя сконструировать ракету, развивающую сверхсветовую скорость. Этот тезис был проверен на ускорителях частиц, где протоны и электроны разгоняют все сильнее и сильнее, они развивают скорости все ближе и ближе к световой, но скорости света так и не достигают.
Вот другой результат. Вообразите себе «светочасы», устройство, в котором луч света отражается по вертикали между двумя зеркалами, одно из которых расположено, скажем, на потолке, а второе на полу. Каждое отражение – это такт часов. Скорость света равна 300 000 километров в секунду или примерно 30 см в наносекунду. Одна наносекунда – это миллиардная часть секунды. Если расположить два зеркала на расстоянии всего 90 см, то часы будут тикать с частотой раз в 3 наносекунды (рис. 17.1).
Рис. 17.1. Светочасы. Мои светочасы тикают каждые 3 наносекунды. Аналогичные светочасы взял с собой астронавт, корабль которого летит относительно меня со скоростью 80 % от световой. Свет движется с постоянной скоростью: 30 сантиметров в наносекунду. Я вижу, как лучи света от часов астронавта летят по длинным полутораметровым диагональным отрезкам и, следовательно, мне кажется, что светочасы астронавта тикают каждые 5 наносекунд. Иллюстрация предоставлена Дж. Ричардом Готтом, адаптирована из Time Travel in Einstein’s Universe, Houghton Mifflin, 2001
Это очень быстрые часы. По конструкции похожи на стоячие часы с маятником, только очень быстрые. Свет будет отражаться между двумя зеркалами туда-сюда, туда-сюда. На моих светочасах он будет попадать в зеркало каждые 3 наносекунды. А теперь представьте себе астронавта, летящего на ракете со скоростью 80 % от световой и взявшего с собой аналогичные светочасы (рис. 17.1). Он летит медленнее скорости света, так что опыт сработает. С точки зрения астронавта, его часы тикают нормально, свет преодолевает путь от зеркала до зеркала за 3 наносекунды. Но если я загляну в иллюминатор его ракеты, то увижу, что его часы летят вместе с ракетой на скорости 80 % от световой, а луч света в них летит по диагональной траектории. Луч света летит снизу, но к тому времени, как он преодолеет 90 см, верхнее зеркало уже успеет сдвинуться вправо на 120 см. Свет летит по диагональной траектории, состоящей из отрезков по 150 см. Получается прямоугольный треугольник со сторонами 3–4–5: 90 см по вертикали, 120 см слева направо и гипотенуза длиной 150 см. Треугольник удовлетворяет теореме Пифагора: 32 + 42 = 52. Тогда как относительно меня свет проходит 150 см по диагонали из левой нижней точки в правую верхнюю, с точки зрения астронавта свет преодолевает 120 см слева направо. Следовательно, астронавт движется относительно меня с 4/5, или 80 %, скорости света. Поскольку мне должно казаться (согласно второму постулату), что луч света преодолевает 30 см в наносекунду, я должен сказать, что свет успевает пройти отрезок диагональной траектории длиной 150 см, из нижней точки слева в верхнюю точку справа. Именно это я и наблюдаю. Еще через 5 наносекунд он вновь опустится по диагонали и попадет в нижнее зеркало на 240 см правее, нежели в начале предыдущего отскока. Соответственно я должен сказать, что часы астронавта тикают с частотой раз в 5 наносекунд, а не раз в 3 наносекунды. Мне кажется, что его часы идут медленнее моих со скоростью 3/5 по отношению к ним.
Теперь переходим к самому интересному. Мне должно казаться, что и сердце у астронавта бьется медленнее, чем у меня (также со скоростью 3/5 от моего), либо он сам сравнит ход светочасов со своим пульсом и заметит, что они идут медленнее, и таким образом сможет логически догадаться, что движется (а это противоречит первому постулату). Любые часы, имеющиеся у него на борту, также должны замедляться, идти со скоростью 3/5 от обычной, либо он сможет понять, что движется. Если у астронавта будет мюон (это нестабильная элементарная частица тяжелее электрона), который непременно распадается, то на борту ракеты он должен распадаться медленнее. Астронавт медленнее съедает обед. Еще… он… медленнее… разговаривает. Все процессы на борту ракеты идут медленнее.
Степень замедления зависит от того, с какой скоростью движется астронавт. Если я успею состариться на 10 лет, то (согласно аналогичным расчетам с использованием светочасов[26]) астронавт за это время состарится на 10 лет умножить на √1 – (v2/c2)[27]. Если говорить о скоростях, которые слишком малы по сравнению со световой – например, скорости, с которыми мы имеем дело в повседневной жизни, – то такой коэффициент старения будет практически равен 1. Если отношение v/c невелико по сравнению с 1, то величина (v2/c2) будет совершенно крошечной по сравнению с 1; если вычесть такой мизер из 1, то останется число, практически равное 1, а квадратный корень из 1 равен 1 – таким образом, этот коэффициент существенным образом не скажется на старении астронавта. То есть астронавт состарится на те же 10 лет, что и я, и разница в возрасте у нас будет незаметна. Вот почему мы обычно не замечаем, что движущиеся часы тикают медленнее неподвижных. Но если астронавт движется на субсветовой скорости, допустим, на 99,995 % скорости света, – то v/c = 0,99995 и √1 – (v2/c2) = всего 0,01. Можете проверить на калькуляторе. То есть за 10 лет я старею на 10 лет, а астронавт – всего на 1/10 года. При субсветовых скоростях замедление времени на космическом корабле может быть весьма впечатляющим.
Мы верим в эту формулу, так как она проверена экспериментально. Физики брали атомные часы на борт самолета и летели на восток, так что скорость самолета складывалась со скоростью вращения Земли. Оказалось, что эти атомные часы действительно отстали (примерно на 59 наносекунд) по сравнению с атомными часами, оставшимися в аэропорту. Период полураспада мюона в лабораторных условиях равен 2,2 микросекунды, то есть половина мюонов распадается за 2,2 микросекунды. Но мюоны (в виде космических лучей) подлетают к Земле почти на скорости света и распадаются гораздо медленнее (в соответствии с формулой Эйнштейна). Мы верим в правильность этой формулы, поскольку она многократно проверена. Мы живем в забавной Вселенной, работающей по странным законам, но, по-видимому, именно в такой Вселенной мы и живем. Кажется, два постулата Эйнштейна верны. В следующей главе мы рассмотрим, как из двух этих постулатов следует вывод, что E = mc2(эта формула подтвердилась при взрыве атомной бомбы). Такие результаты поистине замечательны. Замечательны потому, что и сами постулаты выдающиеся. Чем больше мы проверяем эти выводы, тем больше убеждаемся в справедливости постулатов.
Глава 18Следствия специальной теории относительности
Автор: Дж. Ричард Готт
Специальная теория относительности Эйнштейна произвела революцию в научных представлениях о пространстве и времени. Эта теория подразумевала, что время можно трактовать как четвертое измерение наряду с тремя пространственными измерениями. Интересно, что учитель Эйнштейна Герман Минковский воспользовался его работами о теории относительности и на их основе разработал свою геометрическую картину пространства и времени, опубликовав результаты работы в 1907 году. Эйнштейн сразу же согласился с его точкой зрения. Мы живем в четырехмерной Вселенной. Что это означает? Принято считать, что поверхность Земли двумерная. Чтобы обозначить любую точку на поверхности Земли, нужны две координаты: широта и долгота. Если вы знаете широту и долготу, то знаете, в какой точке Земли находитесь. Но Вселенная четырехмерна, а значит, чтобы указать местоположение во Вселенной, нужны четыре координаты. Если я хочу, чтобы вы пришли на вечеринку, то должен буду вам сообщить значения широты и долготы, под которыми она состоится, но еще должен сообщить и высоту. Вам же не нужно на четвертый этаж, если вечеринка будет на двенадцатом! Кроме того, я должен сказать вам, к какому времени прийти. Если вы придете не вовремя, то пропустите вечеринку, точно как если бы зашли не на тот этаж. Любое событие, например новогодние посиделки на 54-м этаже в здании, расположенном на пересечении 5-й авеню и 34-й улицы в Нью-Йорке, описывается четырьмя координатами: широтой, долготой, высотой над поверхностью земли и временем, к которому нужно прибыть. Поскольку для этого нужны четыре координаты, нам известно, что мы живем в четырехмерной Вселенной.
Вооружившись этой идеей, можно чертить пространственно-временные схемы. Несомненно, вы видели картинку, на которой Земля обращается вокруг Солнца. Солнце – большой белый круг в центре, а орбита Земли показана как прерывистая окружность вокруг него (поскольку эллиптическая земная орбита по форме очень близка к круговой). Землю можно изобразить как маленькую голубую точку, причем если сопоставить картинку с циферблатом, то 1 января точка Земли окажется на 12 часах. Если бы мы хотели показать, как Земля движется вокруг Солнца, то сделали бы последовательность картинок, и на них Земля двигалась бы по орбите против часовой стрелки. 1 февраля она оказалась бы на отметке 11 часов, 1 марта – на 10 часов и так далее. Вращение Земли можно изобразить в виде мультфильма: проматывая кадры, мы видим, как Земля совершает путь вокруг Солнца.
Теперь предположим, что мы взяли этот мультфильм и разрезали на отдельные кадры, а получившиеся фрагменты сложили в стопку друг на друга. Каждый кадр соответствует моменту времени, и чем выше кадр лежит в стопке, тем более поздний момент обозначает. Таким образом мы могли бы дать пространственно-временную картину вращения Земли вокруг Солнца. Ось времени пройдет по вертикали: прошлое будет находиться снизу, а будущее – сверху. Две горизонтальные линии соответствуют двум пространственным измерениям (изображаемым на двумерной модели орбитального вращения Земли вокруг Солнца). Солнце не движется, оно всегда в центре, и, следовательно, все солнечные круги складываются в «полосу», пронизывающую стопку кадров по вертикали. Но Земля в каждом кадре переходит на новое место, продолжая движение по околосолнечной орбите против часовой стрелки. Поэтому орбита Земли напоминает голубую спираль, вьющуюся вокруг центральной белой точки (Солнца). Радиус голубой спирали равен 8 световым минутам – это радиус земной орбиты. Спираль ежегодно оборачивается вокруг Солнца по вертикали. Голубая спираль, вьющаяся вокруг вертикальной белой колонки, – это пространственно-временная схема. На эту схему можно добавить орбиты Меркурия, Венеры и Марса, которые будут выглядеть как новые спирали, также вьющиеся вокруг белой колонки (Солнца). Это трехмерная схема, но я убираю одно из пространственных измере