Большое космическое путешествие — страница 61 из 97

Теперь вернемся к тому, какой мне представляется ракета Жака. После того как лазерный луч Жака отразится от зеркала в носовой части ракеты, он вернется к Жаку всего через 5 нс (с моей точки зрения). Я вижу, как лазерный луч и астронавт приближаются друг к другу. Всего за 5 нс отраженный лазерный луч успевает пролететь 150 см, а ракета за то же время пролетает 120 см, таким образом, за 5 нс астронавт и лазерный луч сближаются на 270 см. С моей точки зрения, лазерный луч, отправленный в носовую часть ракеты, за 50 нс успевает слетать туда и обратно (45 нс + 5 нс). Лазерный луч, отправленный в заднее зеркало, догоняет астронавта за 45 нс. По земному времени (ET) ему на это нужно 5 + 45 нс. Соответственно с моей точки зрения оба лазерных луча возвращаются к астронавту одновременно. Астронавту также должно казаться, что отраженные лучи возвращаются к нему одновременно, так как они возвращаются в неизменных пространственно-временных координатах.

У меня на часах между пуском и возвращением двух лазерных лучей проходит 50 нс. Я вижу, как лазерные лучи движутся на скорости 80 % от скорости света (v/c = 0,8), поэтому мне должно казаться, что часы астронавта идут с 60-процентной скоростью (или √1 – (v2/c2)) по сравнению с моими часами. За то время, пока на моих часах пройдет 50 нс, астронавт должен состариться всего на 30 нс. Когда астронавт фиксирует возврат лазерных лучей, он должен сказать, что они вернулись за 30 нс «астронавтского» времени (AT), поскольку к моменту их прибытия он состарится на 30 нс. Лазерные лучи должны были одновременно достичь носа и хвоста ракеты через 15 нс AT после пуска. Обратите внимание на ломоть французской буханки, на котором написано «15 нс AT». С точки зрения астронавта, в этом ломте находятся одновременные события. Астронавту кажется, что он находится в состоянии покоя, и вся ситуация выглядит для него точно так же, как выглядела бы для меня в лаборатории на Земле. Поскольку по его времени лазерные лучи успевают обернуться за 30 нс, он должен логически заключить, что длина ракеты – 9 м.

Два события – попадание лазерных лучей в хвостовую и носовую часть ракеты – кажутся мне отдельными актами, разделенными в пространстве на 15 м и во времени на 45 нс. Если воспользоваться скоростью света (30 см/нс) для сравнения расстояний в пространстве и расстояний во времени, то можно сказать, что для меня эти события будут разделены в пространстве сильнее, чем во времени. Такой феномен называется «пространственноподобным интервалом». Обязательно найдется астронавт, летящий с огромной скоростью (которая, однако, ниже световой), кому два этих события покажутся одновременными. Ему покажется, что эти события разделены в пространстве, но происходят одновременно. Эйнштейн продемонстрировал, что два наблюдателя могут прийти к общему мнению лишь о том, чему равен квадрат интервала между двумя событиями в пространстве минус квадрат интервала между этими же событиями во времени; обозначим эту величину ds2. Выбрав систему отсчета, в которой скорость света равна единице (то есть 30 см = 1 нс), я нахожу, что два события должны быть разделены в пространстве на 50 единиц и во времени на 40 единиц. В таком случае я могу вычислить ds2 = 502–402 = 2500–1600 = 900. Но астронавт Жак считает, что два этих события произошли одновременно и они разделены в пространстве на 30 единиц (как вы помните, он считает, что длина его ракеты 9 м). Но когда он вычисляет ds2, у него получается 302 – 02, или 900, точно как у меня. Мы можем не сойтись в вопросах о времени и расстоянии, но, как ни удивительно, некоторые важные феномены остаются для нас тождественными.

Теперь рассмотрим интервал между тем моментом, когда астронавт отправляет световой сигнал, и моментом прибытия этого сигнала в хвост ракеты. Измеряемая мною в пространстве дистанция между двумя этими событиями составит 150 см, а временной интервал между двумя этими событиями – 5 нс. Итак, можно вычислить, что ds2 равен (интервал в пространстве)2 – (интервал во времени)2 равен 52–52 = 0. По измерениям астронавта, точки двух событий отстоят друг от друга на 150 см и между этими событиями проходит 5 нс. Таким образом, у него получается 152–152 = 0, точно как и у меня. События, соединенные лучом света (в таком случае говорят о нулевом интервале), всегда имеют ds2 = 0 с точки зрения любого наблюдателя. Согласно второму постулату Эйнштейна, все наблюдатели должны видеть луч света, летящий в этой системе координат с постоянной скоростью 1 (30 см/нс); следовательно, интервал в пространстве должен быть равен интервалу во времени и ds2 должно быть равно нулю. На самом деле, знак «минус» в формуле ds2 нужен для того, чтобы гарантировать, что второй постулат всегда выполняется.

По теореме Пифагора, если в плоскости с системой декартовых координат (x, y) две точки разделены отрезками dx и dy, то их (интервал в пространстве)2 = dx2 + dy2 + dz2. Это евклидова стереометрия, изучаемая в старших классах. Но Эйнштейн утверждает, что ds2 = (интервал в пространстве)2 – (интервал во времени)2. Эту формулу можно переписать в виде ds2 = dx2 + dy2 + dz2– (интервал во времени)2. Но интервал во времени равен просто dt. Итак, подставив это значение, имеем ds2 = dx2 + dy2 + dz2dt2. Так что есть разница между временным измерением t и любым из пространственных измерений (x, или y, или z): перед dt2 стоит знак «минус». В этом минусике и есть вся разница. Именно он отличает время от известных нам обычных пространственных измерений.

Уф! Мы изрядно позанимались арифметикой, но подходим к важному моменту: разнице между временем и пространственными измерениями.

Как вы помните, в самом начале я измерил длину ракеты астронавта, и у меня получилось 540 см. Таким образом, ракета короче, чем кажется астронавту (он считает, что ее длина 9 м). Таким образом, мне его ракета кажется в √1 – (v2/c2) раз короче, чем ему. Наши часы рассогласованы, наши рулетки рассогласованы – что, опять же, подтверждает, что наблюдаемая скорость света всегда равна 30 см/нс. Как могут разниться наши данные о ширине мировой линии его ракеты? Дело в том, что «ломтики» пространства-времени, приходящиеся на эту мировую линию, у нас отличаются. Я измеряю ширину мировой линии в конкретный момент земного времени (ET), а он – в конкретный момент ракетного времени (AT). Я режу его мировую линию горизонтальными ломтиками, как обычную американскую буханку, а он режет ее под углом, как французский хлеб. Другая метафора: допустим, я распилил ствол дерева по горизонтали и говорю: «Ширина ствола – 15 см». Если бы кто-то распилил этот же ствол наискосок, то у него мог бы получиться спил шириной 25 см, хотя ствол был бы тот же самый. Мы с астронавтом просто по-разному режем мировую линию ракеты.

Почему это важно? Рассмотрим крайний случай, когда астронавт летит мимо меня (я на Земле) со скоростью 99,995 % от скорости света; в такой ситуации волшебный коэффициент √1 – (v2/c2) равен 1/100. Я вижу, что астронавт направляется к звезде Бетельгейзе, до которой 500 световых лет. На мой взгляд, он прибудет туда примерно через 500 лет: ведь он летит практически со скоростью света, а до Бетельгейзе 500 световых лет, так что пока он туда доберется, на Земле пройдет 500 лет (ET). Но я увижу, что он состарился всего на 1/100 × 500 лет – на 5 лет. Мне кажется, что его часы идут очень медленно, именно потому, что он летит так быстро. Все его действия кажутся мне медленными – пока он позавтракает, у меня на часах пройдет пятеро суток! Достигнув Бетельгейзе, он действительно состарится всего на 5 лет.

Как он сам воспринимает этот путь? Ему кажется, что он находится в покое, Земля удаляется от него со скоростью 99,995 % от скорости света, а Бетельгейзе – приближается с такой же скоростью. Сначала он видит, как мимо пролетает Земля – вжух! – потом, 5 лет спустя, как мимо пролетает Бетельгейзе – вжух! В принципе, Земля и Бетельгейзе находятся в состоянии покоя друг относительно друга, их мировые линии параллельны. Система Земля + Бетельгейзе для астронавта подобна огромной ракете, на носу которой расположена Земля, а в хвосте – Бетельгейзе. Поскольку эта ракета пролетает мимо него практически со скоростью света, то есть расстояние от Земли до Бетельгейзе преодолевается за 5 лет, астронавт приходит к выводу, что длина ракеты Земля – Бетельгейзе равна 5 световых лет. Именно таким, на его взгляд, должно быть и расстояние от Земли до Бетельгейзе. Расстояние от Земли до Бетельгейзе кажется ему в 100 раз меньше, чем мне. Мои «длины» кажутся ему сжатыми: все предметы кажутся ему в 100 раз короче, чем мне. Коэффициент укорачивания, который он фиксирует, равен √1 – (v2/c2), и именно с таким коэффициентом я наблюдаю замедление его старения. Несомненно, это один из самых впечатляющих результатов специальной теории относительности, прекрасной в своей симметрии и железной логике.

Тот факт, что различные наблюдатели по-разному трактуют одновременность, объясняет «парадокс шеста и сарая». Вообразим, что вышеупомянутый Жак, который путешествовал со скоростью 80 % от скорости света, теперь не астронавт, а прыгун с шестом. Он бежит с девятиметровым шестом, направленным по ходу движения. Когда он будет пробегать мимо меня, мне покажется, что длина этого шеста – всего 540 см. Допустим, у нас есть девятиметровый сарай. Передняя дверь сарая открыта, задняя – закрыта. Жак вбегает в открытую переднюю дверь; когда он добежит до центра сарая, я могу закрыть дверь, и его 540-сантиметровый шест будет заперт в моем девятиметровом сарае. Затем я открываю задню