Большое космическое путешествие — страница 64 из 97

[29] Горацио в «Гамлете»:

«А мне незнающим позвольте рассказать,

Как все произошло.

То будет повесть

Кровавых, неестественных убийств,

Суда случайного, нечаянных кончин

И козней, павших на главу злодеев».

После войны Эйнштейн посвятил свою жизнь борьбе за ядерное разоружение.

Размышляя о путешествиях с субсветовой скоростью (которые были заведомо нереализуемы в его время), Эйнштейн тем не менее открыл принцип, изменивший ход истории. Работа Эйнштейна, проделанная им в «чудесный» 1905 год, позволила ему войти в число научных тяжеловесов, встать в один ряд с Марией Кюри и Максом Планком. Но величайшее достижение Эйнштейна еще было впереди.

Глава 19Общая теория относительности Эйнштейна

Автор: Дж. Ричард Готт


Величайшим научным достижением Эйнштейна была общая теория относительности – теория искривленного пространства-времени, объяснившая природу гравитации и заменившая ньютоновскую теорию тяготения.

Эйнштейн размышлял над следующей проблемой. Одновременно бросим тяжелый и легкий шары. Они упадут на пол одновременно. Галилею об этом было известно. А что сказал бы Ньютон? Он бы отметил, что сила тяготения между шаром и Землей равна F = GmшарMЗЕМЛ/rЗЕМЛ2. Он бы также сказал, что F = Gmшарaшар, так что ускорение aшар равно силе, приложенной к шару, деленной на его массу. Совместив эти уравнения, получим aшар = GMЗЕМЛ/rЗЕМЛ2. Масса шара сокращается. Ускорение шара не зависит от его массы – поэтому и тяжелые, и легкие шары должны падать в одинаковом темпе. Ньютон бы сказал, что тяжелый шар испытывает более сильное тяготение Земли. Но он бы добавил, что такой шар хуже ускоряется, поскольку F = ma, что попросту скомпенсирует увеличенную силу, поэтому ускорение обоих шаров будет совершенно одинаковым. Это изрядное совпадение, позволяющее утверждать, что масса, используемая в формуле гравитации (гравитационная масса), и масса из формулы F = ma (инертная масса) идентичны.

Эйнштейн обдумывал эту проблему иначе. Он размышлял, что бы произошло, окажитесь вы в ускоряющемся космическом корабле, летящем в межзвездном пространстве, где нет гравитации. (Подобно ускоряющемуся звездолету, работающему на аннигиляции вещества и антивещества, о котором Нил рассказывал в главе 10.) Если вы бросите два шара, они просто повиснут в невесомости друг рядом с другом. Затем, поскольку из сопел ракеты вырывается пламя и корабль с ускорением движется вверх, пол корабля с ускорением движется вверх и сталкивается с плавающими в невесомости двумя шарами. Шары, естественно, врезаются в пол в тот самый момент. Они просто плавали в пространстве, но ударились о пол корабля, потому что сам пол подскочил. Просто. В таком случае это не совпадение, что оба шара ударяются о пол одновременно. Вновь представим, что мы бросаем два шара на землю. На этот раз попробуем вообразить, что шары просто плавают в пространстве друг рядом с другом, а пол подскакивает и сталкивается с ними. Люди знали, что на ускоряющемся космическом корабле эффект был бы точно таким, как если бы мы оставались дома на Земле. Но Эйнштейн сказал, что если эксперимент на ускоряющемся космическом корабле протекает точно как при гравитации, значит, это ускорение и есть гравитация. Он назвал это явление принципом эквивалентности. Он назвал эту находку «своей самой счастливой идеей», и осенила она его в 1907 году. Если два явления выглядят одинаково, значит, они должны быть идентичны. Это было очень смелое заключение.

Эйнштейн и ранее пользовался такой логикой. Заряд, движущийся мимо магнита, ускоряется под действием магнитного поля, но стационарный заряд испытывает точно такое же ускорение, когда мимо него движется магнит. Во втором случае, по уравнениям Максвелла, ускорение порождается электрическим полем, которое генерируется изменяющимся магнитным полем. Эйнштейн пришел к выводу, что два этих явления должны быть идентичны и что лишь относительное движение по-настоящему важно. Таким образом, представление об электрическом и магнитном поле как об отдельных сущностях было неверным, и два этих феномена требовалось заменить одним: электромагнитным полем. Аналогично, Эйнштейн обнаружил, что наши представления о пространстве и времени как о самостоятельных сущностях нужно заменить идеей четырехмерного пространства-времени. Зачастую крупные прорывы в науке происходят, когда кто-то догадывается, что два различных явления на самом деле идентичны. Так, Ньютон осознал, что яблоко падает под действием той самой силы, которая удерживает Луну на орбите. Аристотель знал, что яблоко падает на землю под действием силы тяжести, но предполагал, что Луну удерживает на орбите какая-то иная, небесная сила. Ньютон осознал, что два этих явления суть одно и то же.

Эйнштейн искренне верил в свою идею о принципе эквивалентности. Если одновременно бросить легкий и тяжелый шар, то они просто зависнут в свободном падении, но поверхность Земли подскакивает и ударяется о них. Вся беда заключалась в том, что подобное казалось бессмысленным. Как поверхность Земли может повсюду с ускорением двигаться вверх, если Земля при этом не увеличивается? Если бы она раздувалась, как воздушный шарик, то могла бы действительно подскакивать к шарам, которые мы бросаем. Но Земля ни на йоту не увеличивается, поэтому такая идея кажется бессмысленной. Она имела бы право на существование, лишь если бы пространство-время было искривлено и не подчинялось законам евклидовой геометрии.

Давайте поговорим о кривизне. На рис. 19.1 показан глобус. Его поверхность искривлена, и поэтому евклидова планиметрия на ней не работает. Евклид учил, что сумма углов любого треугольника на плоскости равна 180°. Кратчайшая линия между двумя точками, которую можно провести на глобусе, – это дуга большого круга. Большой круг – это круг на глобусе, центр которого совпадает с центром глобуса. Экватор Земли – это большой круг. Любой меридиан – это большой круг. Кратчайшее расстояние между Нью-Йорком и Северным полюсом проходит по меридиану, соединяющему Нью-Йорк и Северный полюс. На глобусе можно построить треугольник, в вершинах которого лежат Северный полюс и две точки на экваторе, причем оба экваториальных угла этого треугольника будут равны 90°. Получится треугольник (состоящий из дуг большого круга), в котором будет три угла по 90°, всего 270°.

Если отправиться с Северного полюса и так и идти, пока не достигнешь экватора, то на экваторе потребуется повернуть на 90°, чтобы взять курс на запад. Затем, достигнув второй точки на экваторе, понадобится вновь повернуть на 90°, чтобы взять курс на север и вернуться на Северный полюс. Прибыв туда, вы увидите, что две стороны треугольника смыкаются на Северном полюсе опять же под углом 90°, поскольку это два меридиана, разделенные на 90°. Вы прошли по треугольнику с тремя прямыми углами, который невозможен по законам евклидовой планиметрии. Поверхность сферы искривлена, поэтому устроена иначе, нежели евклидова планиметрия.

Допустим, мы начертили на глобусе круг, центр которого совпадает с Северным полюсом. Пусть радиус круга, измеренный по поверхности глобуса, равен расстоянию от полюса до экватора (это 1/4 окружности Земли). Окружность такого круга, центр которого совпадает с Северным полюсом, – это экватор. Длина экватора равна длине окружности Земли, поэтому радиус круга, который вы начертите, должен быть равен 1/4 окружности Земли. Следовательно, в данном случае окружность круга вчетверо больше радиуса, то есть превышает радиус не в 2π раз, как положено в евклидовой геометрии, а меньше. Опять же оказывается, что искривленная поверхность сферы не подчиняется законам евклидовой планиметрии.


Рис. 19.1. Треугольник с тремя прямыми углами, построенный на сфере. Снимок предоставлен Дж. Ричардом Готтом


Эйнштейн представлял себе вращающуюся пластинку для фонографа. Если бы на пластинке стоял муравей, то ему пришлось бы крепко упираться лапками, чтобы не упасть. Понадобилось бы производить центростремительное ускорение (то есть крепко держаться), и при этом ощущалась бы «гравитационная» сила, которая тянет муравья к краю пластинки. На некоторых аттракционах можно испытать подобный эффект: кабина расположена в своеобразной емкости, напоминающей вращающуюся консервную банку, и в ней вы ощущаете силу g, толкающую вас на стенки цилиндра. Там можно даже ноги от пола оторвать. В обоих случаях: вращающаяся пластинка фонографа и вращающаяся кабина на аттракционе – ускоряющееся круговое движение имитирует гравитацию, точно как на ускоряющемся космическом корабле. Предполагается, что пластинка фонографа плоская. Но Эйнштейн знал: поскольку край пластинки стремительно движется, два наблюдателя (один сидит в центре пластинки, а другой на краю), попытавшись измерить одинаковые линейки, лежащие на пластинке, получат разные результаты. Длина окружности вращающейся пластинки, измеренная сидящими на этой пластинке наблюдателями, не будет равна 2πr (но именно такова длина окружности в евклидовой планиметрии). Эйнштейн пришел к выводу, что вращающаяся пластинка фонографа обладает неевклидовой геометрией (имеет кривизну) именно потому, что вращается, и в таком случае на ней имитируется гравитация. Если такая смоделированная гравитация – не что иное, какгравитация (по принципу эквивалентности Эйнштейна), то кривизна пространства-времени сама по себе может порождать гравитацию.

Если я нахожусь в Нью-Йорке и хочу отправиться в Токио, то мой путь должен пролегать по дуге большого круга – кратчайшему возможному маршруту. Между двумя этими городами на глобусе можно даже натянуть струну. Дуга большого круга пройдет через север Аляски (рис. 19.2). Найдите глобус и попробуйте сами. Именно по такой траектории полетит самолет. Кроме того, это кратчайший возможный путь между двумя городами. Чтобы в этом убедиться, возьмите игрушечный грузовичок и прокатите его по глобусу от Нью-Йорка до Токио. Колеса у такой машинки катятся прямо вперед; если вы правильно нацелите его на Токио, то можете просто ехать по дуге большого круга, никуда не сворачивая, миновать Северную Аляску и прибыть на место назначения. Такой кратчайший возможный путь называется