В 1974 году Стивен Хокинг совершил удивительное открытие, прославившее его: оказывается, черная дыра испускает тепловое излучение. Энергия может вырваться из черной дыры, и действительно вырывается. Как было сделано это открытие? Принстонский аспирант Яаков Бекенштейн беседовал со своим научным руководителем Джоном Арчибальдом Уилером. Уилер был одним из авторов термина «черная дыра». Удачное название! Черные дыры – это дыры, причем черные, ведь они не излучают свет. Как рассказывал Нил, астрономы предпочитают не мудрствовать, именуя объекты: «Оно черное и напоминает дыру – давайте назовем это просто “черная дыра”». Уилер был зачинателем всех исследований, связанных с черными дырами, именно он помог оживить интерес к общей теории относительности в 1960-е годы. Он нашел единомышленников, заинтересованных в работе над этой проблемой, и вместе с Чарльзом Мизнером и Кипом Торном написал классическую книгу, первые редакции которой я штудировал в аспирантуре. Когда Крускал получил свою диаграмму, он отправил ее Уилеру, поинтересовавшись мнением ученого, а сам ушел в отпуск. Уилер прочел статью и нашел ее настолько важной, что подготовил рукопись сам и направил ее в журнал Physical Review, указав, что автор работы – Крускал. Вернувшись из отпуска, Крускал узнал, что статья уже ушла в редакцию.
Уилер пригласил своего аспиранта Бекенштейна поговорить. Взяв чашку горячего чая, Уилер налил в нее немного холодной воды и сказал: «Я только что совершил преступление: повысил энтропию (беспорядок) во Вселенной. И ничего не исправишь: я же не могу вымешать воду обратно из чая». Бекенштейн знал, что энтропия во Вселенной со временем только возрастает. Нечасто увидишь, как осколки самособираются в вазу. На самом деле, когда видишь подобное в кино (эффект достигается обратной перемоткой), становится смешно, поскольку каждый знает, насколько это невероятно. Существует ненулевой шанс, что такое произойдет, но он очень мал. Статистически ожидается, что степень неупорядоченности во Вселенной должна возрастать – этот принцип называется «второй закон термодинамики». Мы любим порядок: стыдно раскокать красивую вазу на черепки. Следуя этой логике, предосудительно любое увеличение энтропии, например подмешивание воды в чай. «Но, – продолжал Уилер, – теперь я могу скрыть улики этого преступления, если брошу остывшую смесь чая и воды в черную дыру. Масса черной дыры при этом увеличивается на массу попавших туда чая и воды. Но она увеличилась бы ровно на столько же, если бы я налил в черную дыру воду и чай отдельно. Итак, восстановлен статус-кво, который существовал бы без смешивания воды и чая, – и, по-видимому, второй закон термодинамики в данном случае нарушается. Подумайте об этом!»
Бекенштейн всерьез воспринял идею Уилера и действительно стал ее обдумывать. Статья, которая получилась у него в результате, кажется мне исключительно важной. Бекенштейн отметил, что Хокинг доказал теорему, согласно которой общая площадь всех горизонтов событий во Вселенной со временем возрастает, если плотность массы повсюду остается неотрицательной, – и это казалось логичным. Когда в черную дыру поступает новая масса, масса черной дыры увеличивается, равно как и ее радиус Шварцшильда. Поверхностная площадь горизонта событий, равная 4πrS2, также возрастает. При столкновении двух черных дыр (как в случае, зафиксированном LIGO) возникает новая черная дыра с горизонтом событий, общая площадь которого больше, чем сумма площадей горизонтов событий двух исходных черных дыр. Так, согласно расчетам, проведенным в случае LIGO, площадь горизонта событий получившейся при столкновении вращающейся черной дыры (в 62 солнечные массы) как минимум в 1,5 раза больше, чем сумма площадей горизонтов событий двух исходных черных дыр (в 29 и 36 солнечных масс). С точки зрения Бекенштейна, такой феномен постоянного возрастания площадей горизонтов событий со временем напоминал проявление энтропии, которая, как известно, со временем также лишь возрастает.
Бекенштейн сформулировал мысленный эксперимент: как можно осторожнее (практически чтобы можно было отдернуть) опускаем частицу на струнке в шварцшильдовскую черную дыру и считаем, насколько при этом возросла площадь дыры. Бекенштейн вычислил, что такой акт соответствует потере одного бита информации, а именно информации о том, существовала эта частица или нет. Поскольку потеря информации в контексте данного мысленного эксперимента соответствует минимальному увеличению площади – порядка (1,6 ×10–33 см)2 = hG/2πc3 (все члены формулы нам до боли знакомы: вот постоянная Планка h, вот постоянная Ньютона G, а вот скорость света c). О расстоянии порядка 1,6 ×10–33 см, именуемом планковской длиной, мы вновь поговорим в главе 24. При таких масштабах геометрия пространства-времени становится нечеткой в силу квантово-механического принципа неопределенности Гейзенберга. Когда Уилер бросал в черную дыру свою чашку с остывшим чаем, он повысил площадь горизонта и энтропию этой дыры. Общая энтропия Вселенной при этом все равно возросла, поскольку увеличилась энтропия черной дыры, как только в нее упала чашка. Бекенштейн заключил, что черные дыры обладают очень большой, но конечной энтропией.
Интересно, что работа Бекенштейна демонстрирует, каков предельный объем информации, которую можно сохранить на 6-дюймовом жестком диске. Это 1068 бит = 1,16 × 1058 гигабайт. Если вы попытаетесь записать на жесткий диск такого размера еще больше информации, он станет настолько массивным, что схлопнется в черную дыру (этот случай будет подробно рассмотрен в приложении 2). Кроме того, аргументация Бекенштейна ограничивает и количество информации, которую можно вместить в наблюдаемой части Вселенной и, следовательно, сколько может существовать различных вселенных с такими размерами и такой энергией, как у нашей. Речь о числе 10^(10^124) – Нил упоминал его в главе 1. Итак, статья Бекенштейна нашла разнообразное применение.
Но Хокинг (в отличие от меня) считал, что Бекенштейн ошибается. Если в черную дыру умещается конечный объем энергии и при этом ее энтропия увеличивается на конечную величину, та же самая термодинамическая аргументация предполагает, что у черной дыры должна быть конечная температура. Хокинг был убежден, что здесь кроется ошибка. Черные дыры не светятся, как светился бы объект с конечной температурой. Черные дыры черные – их температура нулевая.
Роджер Пенроуз показал, что в случае вращающейся черной дыры частица может распасться на две другие частицы в области пространства непосредственно снаружи от горизонта событий и одна из частиц может упасть в черную дыру, вращаясь в противоположном направлении относительно вращения черной дыры, и общий момент импульса дыры в таком случае снижался бы, тогда как вторая частица улетела бы от черной дыры с большей энергией, чем была у исходной частицы. Часть массы вращающейся черной дыры приходится на энергию вращения, и постепенно черная дыра вращается все медленнее, так что ее масса становится меньше, чем ранее. Снижение вращательной энергии черной дыры позволяет высвободить ту энергию, которая необходима второй частице, образовавшейся при распаде, чтобы улететь от черной дыры. При этом площадь горизонта событий вращающейся черной дыры немного увеличивается. Димитриос Христодулу, еще один ученик Уилера, исследовал эти вопросы, проверяя, какова предельная энергия, которую можно извлечь из вращающейся черной дыры. Яков Зельдович в СССР применил эту идею при исследовании электромагнитных волн. Он сформулировал эвристический аргумент: электромагнитную волну, пролетающую мимо вращающейся черной дыры, можно усилить, придав ей дополнительную энергию, – как пенроузовской ускользающей частице. Процесс напоминал вынужденное излучение – эффект лазера, открытый Эйнштейном. Если следовать такой логике, то из вращающейся черной дыры также должно литься некое спонтанное излучение: дыра постепенно теряет энергию вращения и испускает электромагнитные волны. Алексей Старобинский рассчитал такие эффекты для волн, расходящихся от вращающейся керровской черной дыры.
По воспоминаниям Дона Пейджа[34], ученика Хокинга, Хокинг хотел подобрать для этих идей более солидное обоснование. Хокинг взялся применить квантовую механику к искривленному пространству-времени, чтобы рассчитать рождение и аннигиляцию частиц в искривленном шварцшильдовском пространстве-времени и проверить, на самом ли деле невращающаяся черная дыра испускает какое-либо излучение. Сам немало удивившись, Хокинг обнаружил, что эти частицы действительно рождаются – от черной дыры исходит тепловое излучение. Оказывается, черная дыра обладает конечной температурой! Хокинг опирался на следующий факт: в вакууме все время рождаются пары частиц, которые сразу же сталкиваются друг с другом и аннигилируют. Это называется «виртуальные пары». Такие частицы всегда возникают и сразу же исчезают. Согласно квантово-механическому принципу неопределенности Гейзенберга, энергия системы характеризуется значительной неопределенностью в течение достаточно кратких промежутков времени. Следовательно, энергию, необходимую для рождения электрона и позитрона (нам понадобятся обе частицы; ведь общий электрический заряд обязательно должен сохраняться), можно ненадолго «позаимствовать» прямо из вакуума. Таким образом, парные частицы электрон и позитрон могут родиться рядом друг с другом из вакуума, затем столкнуться и аннигилировать спустя краткий период (порядка 3×10–22 секунд). Но в случае с черной дырой электрон может родиться чуть-чуть под горизонтом событий, а позитрон – слегка за пределами горизонта событий. Электрон, рожденный в пределах горизонта событий, не может вырваться оттуда и аннигилировать с позитроном, оставшимся снаружи. Электрон падает в черную дыру, а позитрон улетает. Электрон, родившийся за горизонтом событий, обладает гравитационной потенциальной энергией, которая отрицательна по знаку и больше по величине, чем энергия массы покоя электрона, рассчитываемая по формуле