Большое космическое путешествие — страница 76 из 97

ерной дыры на горизонте Коши должна образоваться сингулярность. Она не обязательно должна преградить вам путь, но вы хотя бы увидите ее вдалеке, как только пересечете горизонт Коши. Однако если горизонт Коши заключен внутри черной дыры (подозреваю, что так и есть), а черная дыра испарится под действием хокинговского излучения (что неизбежно), то квантовое вакуумное состояние вне черной дыры приобретет слегка отрицательную плотность энергии (и из-за этого горизонт событий начнет сужаться), что, опять же, означает неприменимость теоремы Хокинга. Таким образом, не потребуется нарушать никакие теоремы, чтобы создать машину времени, заключенную во вращающейся черной дыре, где вы не погибаете от столкновения с сингулярностью, до того как пересечете горизонт Коши.

Поскольку черная дыра успевает испариться за конечный период времени, это означает, что вы, приближаясь к горизонту Коши, не увидите всей истории Вселенной, пока не пересечете его (но именно это произойдет перед тем, как горизонт событий черной дыры в результате ее испарения сожмется до нулевого размера). Следовательно, пока вы будете падать в черную дыру, вас не будут беспорядочно бомбардировать фотоны, сильно смещенные в синюю часть спектра. Это тоже неплохо.

Горизонт Коши нестабилен; однако ведь у нас есть истребители, которые также нестабильны в воздухе, но под управлением летчика приобретают удивительную маневренность. Аналогичный пример – фокус с длинным карандашом, который ставишь носиком себе на подушечку пальца и быстро двигаешь пальцем, не давая карандашу упасть. Жонглеры постоянно проделывают такие трюки с першами. В принципе, сверхцивилизация может научиться стабилизировать горизонт Коши, активно возмущая его нужным образом.

Если вы решите слетать в прошлое на год назад, единожды обогнув схлопывающуюся струнную петлю (внутри черной дыры), то для этого потребуется найти струнную петлю, масса которой всего раза в два меньше, чем у нашей Галактики. Лишь сверхцивилизации могут хотя бы попытаться воплотить такой проект.

Погибнете ли вы перед перемещением во времени? Выживете ли и сможете ли слетать к событию из собственного прошлого, и все это – в пределах вращающейся черной дыры? Чтобы ответить на эти вопросы, нам потребуется окончательно разобраться в законах квантовой гравитации – понять, каким образом гравитация проявляется на микромасштабах. Вот еще одна причина, по которой эта проблема столь интересна.

Движение космических струн не единственное решение эйнштейновских уравнений общей теории относительности, допускающее путешествия во времени. Первое решение было связано с нерасширяющейся, но вращающейся Вселенной. Его предложил в 1949 году знаменитый математик Курт Гёдель. Хотя на самом деле наша Вселенная расширяется, а не вращается, решение Гёделя показало, что общая теория относительности в принципе допускает путешествия в прошлое. Если существует одно такое решение, значит, могли обнаружиться и другие. В 1974 году Франк Типлер продемонстрировал, что путешествие в прошлое можно организовать при помощи бесконечно высокого вращающегося цилиндра. В 1988 году Кип Торн и его коллеги Майк Моррис и Ульви Уртсевер предложили модель машины времени на базе проходимой кротовой норы. В общей теории относительности кротовой норой называется короткий туннель, соединяющий две далекие точки в искривленном пространстве-времени. Проходимой называется такая кротовая нора, которая остается распахнутой достаточно долго, чтобы через нее можно было проскочить (в отличие от кротовой норы с диаграммы Крускала, с которой мы познакомились в главе 20). Насколько мы понимаем общую теорию относительности, такие туннели могут существовать, хотя ни один подобный объект пока не открыт. Один выход из туннеля может располагаться возле Земли, а другой – у альфы Центавра, в четырех световых годах отсюда. Однако длина самого туннеля может не превышать трех метров (рис. 21.7).

Если отправить луч света от Земли к альфе Центавра, то свет будет лететь туда четыре года. Но можно проскочить через кротовую нору – и оказаться у альфы Центавра через считаные секунды. Таким образом, можно обогнать луч света, летящий к альфе Центавра, срезав путь через кротовую нору. Как может выглядеть вход в кротовую нору, иными словами, ее устье? На схеме оно напоминает круг, но ведь эта схема учитывает всего два измерения. На самом деле устье кротовой норы имеет форму шара. Оно выглядит примерно как те блестящие зеркальные шары, которые иногда доводится видеть в саду. Это явление верно изображено в фильме «Интерстеллар», на съемках которого Кип Торн работал научным консультантом по физике. Но не думайте, что в кротовой норе отразится ваш земной сад. Вместо этого вы увидите сад с планеты, вращающейся в системе альфы Центавра. Прыгайте в этот шар на Земле и выныривайте из него где-нибудь у альфы Центавра.


Рис. 21.7. Кротовые норы и варп-двигатели. Иллюстрация предоставлена Дж. Ричардом Готтом, адаптирована из Time Travel in Einstein’s Universe, Houghton Mifflin, 2001


Вот как можно превратить кротовую нору в машину времени. Предположим, мы нашли такую кротовую нору 1 января 3000 года. Если взглянуть через нее, то увидишь систему альфы Центавра, но в какое время? Если два устья (выхода из туннеля) синхронизированы, то часы в системе альфы Центавра также будут установлены на 1 января 3000 года. Никакого путешествия во времени не происходит. Но теперь предположим, что мы подводим к кротовой норе массивный космический корабль и гравитационно оттягиваем устье кротовой норы, расположенное поблизости от Земли, на 2,5 световых года вперед и обратно, причем устье движется со скоростью 99,5 % от скорости света. Землянам покажется, что такой путь туда и обратно займет всего 5 лет, и устье кротовой норы вновь окажется около Земли 10 января 3005 года.

Допустим, в центре туннеля кротовой норы сидел астронавт. Он будет стариться вдесятеро медленнее вас, поскольку двигался со скоростью 99,5 % от скорости света. За время путешествия он состарится всего лишь на десятую часть от 5 лет, то есть на полгода. Когда он вернется, у него на часах будет 1 июля 3000 года. Но длина туннеля кротовой норы составляет всего 3 метра. За время путешествия длина туннеля не изменяется, поскольку его геометрия зависит от вещества, расположенного в туннеле кротовой норы, а это вещество не изменилось. Более того, астронавт находится в состоянии покоя относительно устья, обращенного к альфе Центавра, а само это устье стационарно относительно альфы Центавра, поскольку с той стороны никакого движения не происходит. Часы астронавта должны оставаться синхронизированными со временем альфы Центавра. Если вы заглянете в кротовую нору по возвращении астронавта и увидите, что у него на часах сейчас 1 июля 3000 года, то расположенные у него за спиной часы из системы альфа Центавра также должны показывать 1 июля 3000 года. Следовательно, когда устье кротовой норы возвращается к Земле 10 января 3005 года, вы можете заглянуть в нее и увидеть часы из системы альфы Центавра, которые в этот момент будут показывать 1 июля 3000 года. Уже понимаете, какая возможность перед вами открывается. Прыгаете через кротовую нору и оказываетесь в системе альфы Центавра 1 июля 3000 года. Садитесь на космический корабль и возвращаетесь к Земле на скорости 99,5 % от скорости света. Ваш путь через обычное пространство займет чуть более 4 лет, вы вернетесь на Землю 8 июля 3004 года. Но вы отправились в путь 10 января 3005 года, то есть вы вернулись домой раньше, чем улетели. Поэтому вы можете поучаствовать в событиях собственного прошлого. Пожать руку себе же 8 июля 3004 года, еще до начала пути. Обратите внимание: через кротовую нору можно попасть в прошлое, но не раньше того момента, в который была создана машина времени, то есть той даты, когда от Земли стали оттягивать расположенное близ нее устье кротовой норы. Так, нельзя уйти в прошлое к дате ранее 3000 года, поскольку в это время еще не были рассинхронизированы два устья кротовой норы.

Направление этим исследованиям было задано Карлом Саганом. Он написал научно-фантастический роман «Контакт», в главе 10 Нил рассказывал вам о фильме по этому роману. По замыслу Сагана, героиня романа, которую в кино играет Джоди Фостер, должна была прыгнуть в кротовую нору и оказаться рядом с Вегой – звездой, удаленной от нас на 25 световых лет. Карл хотел, чтобы эпизод получился корректным с точки зрения физики, и позвонил своему другу Кипу Торну. Торн с коллегами исследовали физику кротовин и пришли к выводу, что кротовые норы должны быть начинены веществом, обладающим отрицательной энергией, то есть таким веществом, энергия которого меньше нуля, и которому присуща отталкивающая гравитация. Свет сходится к кротовой норе, проникает сквозь ее туннель и рассеивается с другой стороны. Это характерное проявление гравитационного отталкивания, свойственного объектам, обладающим отрицательной энергией. Как вы помните, на диаграмме Крускала кротовая нора сопутствовала черной дыре, но перебраться через нее на другую сторону дыры было нельзя. Вы не могли проникнуть в другую вселенную, минуя сингулярность, а при столкновении с сингулярностью вас разрывало на куски. Но если у вас будет материя, обладающая отрицательной энергией, то открытую кротовую нору удастся стабилизировать и перейти через нее на ту сторону. Но где же взять материю, обладающую отрицательной энергией?

Любопытно, что известен квантовый эффект, так называемый «эффект Казимира», при котором наблюдается материя с отрицательной энергией. Если поместить почти вплотную друг к другу две металлические проводящие пластины, то квантовое состояние вакуума между этими пластинами будет обладать отрицательной плотностью энергии. Давление, связанное с эффектом Казимира, было зафиксировано в лабораторных экспериментах, поставленных в лаборатории М.Й. Спарнаэем и С.К. Ламоро. Квантовое состояние вакуума Хартле – Хокинга, возникающее вокруг черной дыры, также обладает слегка отрицательной плотностью энергии, что позволяет черной дыре со временем испариться. При таком испарении площадь горизонта событий уменьшается. Два этих примера демонстрируют, что получить материю с отрицательной энергией возможно. Торн с коллегами выяснили, что если установить в туннеле кротовой норы две сферические пластины выпуклыми сторонами друг к другу, так, чтобы они перекрывали туннель и расстояние между ними не превышало 10