–10 см, то возникающий между ними эффект Казимира должен удержать кротовую нору от схлопывания. Вам останется открыть люки в пластинах – и пройти. (Поскольку все эти варианты сопряжены с такой материей, которая обладает отрицательной энергией, «кротовонорные» решения позволяют создать машину времени в конечной области без возникновения сингулярности, так как теорема Хокинга в данном случае не работает – о чем мы уже упоминали ранее.)
В такой машине времени, которую предложили Торн с коллегами, каждое устье кротовой норы должно весить 100 миллионов солнечных масс и иметь радиус в 1 а.е. Создание такой кротовой норы – масштабный проект, за который могла бы взяться лишь сверхцивилизация. Единственный способ реализовать подобное – найти два микроскопических устья квантовой кротовой норы, удаленные друг от друга на 1,6 × 10–33 см, диаметром также 1,6 × 10–33 см, входящие в состав пространственно-временной квантовой пены, которая, как считается, заполняет микромир. Затем два этих устья потребовалось бы медленно отвести в разные стороны и постепенно нарастить, пока каждое не стало бы весить 100 миллионов солнечных масс. Такие проекты в гараже не делаются! Но недавние работы Малдасены и Сасскинда показывают, что на свете могут существовать микроскопические квантовые кротовые норы, соединяющие частицы, находящиеся в состоянии запутанности, – значит, у нас есть хотя бы отправная точка.
Другая знаменитая модель машины времени – это варп-двигатель, описанный в сериале «Звездный путь». Такой двигатель создает U-образное искажение пространства, которое также позволяет мгновенно преодолевать большие расстояния – например, до альфы Центавра. Это не дыра, а всего лишь U-образное искажение (см. рис. 21.7). Физик Мигель Алькубьерре рассмотрел этот феномен с точки зрения общей теории относительности и обнаружил, что для работы варп-двигателя требуется как вещество с положительной, так и вещество с отрицательной энергией, но теоретически он реализуем.
Недавно Амос Ори предложил модель тороидальной машины времени (напоминающей по форме бублик). Ученые до сих пор открывают новые творческие решения общей теории относительности, связанные с путешествиями во времени.
Стивен Хокинг полагает, что некоторые еще не открытые квантовые эффекты могут «запретить» путешествия во времени, пусть даже такие путешествия допускаются в общей теории относительности. Он выдвинул «гипотезу о защите хронологии», согласно которой законы физики должны каким-то образом исключать путешествия в прошлое. Он обосновал эту гипотезу некоторыми свидетельствами о том, что квантовое состояние вакуума может стать бесконечным при приближении к горизонту Коши и той области, в которой возможны хронопутешествия. Мы с Ли-Синь Ли нашли контрпример, в котором складывалось иное квантовое состояние вакуума, не достигавшее бесконечности на горизонте Коши. Ученик Хокинга Майкл Дж. Кэссиди пришел к аналогичному выводу, но путем иных умозаключений. Итак, представляется, что в некоторых ситуациях путешествия во времени возможны. Опять же, чтобы судить об этом наверняка, нужно определить законы квантовой гравитации.
В 1895 году, когда Уэллс опубликовал роман «Машина времени», известные на тот момент законы (ньютоновской) физики предполагали, что везде одинаково течет общепринятое время, и путешествия в прошлое или будущее не допускались. Но спустя всего 10 лет, в 1905 году, Эйнштейну предстояло доказать, что путешествия в будущее возможны. Космонавт Геннадий Падалка уже улетел в будущее на 1/44 секунды (см. главу 18). В 1915 году Эйнштейн сформулировал теорию гравитации, действующую в искривленном пространстве-времени и описывающую, как можно обогнать луч света; следовательно, такая теория открывала путь к путешествиям в прошлое. Сегодня уже известны несколько решений эйнштейновских уравнений, в принципе допускающих путешествия в прошлое. В настоящее время мы находимся в совершенно противоположной ситуации, чем Уэллс в период написания своего знаменитого романа. Общая теория относительности Эйнштейна, до сих пор выдерживавшая все испытания, которым ее подвергали, – это лучшая имеющаяся у нас теория тяготения, и у нее есть решения, в принципе, допускающие путешествия во времени, пусть даже ресурсами для таких путешествий может располагать лишь сверхцивилизация. Известно, как действует гравитация в макроскопических масштабах, а также известно, что на микромасштабах становится важен вклад квантовых эффектов, так что по-прежнему необходимо разрабатывать теорию квантовой гравитации. Мы должны успешно поженить общую теорию относительности и квантовую механику, сложив из них работоспособную теорию, и понять, возможно ли сконструировать машину времени, позволяющую слетать в прошлое. Насколько мы можем судить сегодня, законы физики, в принципе, допускают путешествия в прошлое, но пока открыт другой вопрос: не запрещены ли такие путешествия какими-то другими законами физики, которые еще только предстоит открыть.
В своей книге «Путешествия во времени в эйнштейновской Вселенной» (Time Travel in Einstein’s Universe, 2001) я исследовал идеи специальной и общей теории относительности применительно к возможности путешествий во времени. Действительно, общая теория относительности изучает путешествия в прошлое, но не с целью сконструировать машину времени в настоящем, а для того, чтобы понять устройство Вселенной. Решения, допускающие путешествия во времени, – это проверка законов физики в экстремальных условиях. В главе 23 я вернусь к теме путешествий во времени, когда мы станем обсуждать условия, сложившиеся в новорожденной Вселенной.
Глава 22Контуры Вселенной и Большой взрыв
Автор: Дж. Ричард Готт
Прежде чем обсудить, какова форма Вселенной, для начала вспомним о том, сколько в ней измерений. Как уже упоминалось выше, мы живем в четырехмерной Вселенной. Чтобы локализовать любое событие, нужно указать четыре его координаты: в трех пространственных измерениях и во времени. В своей специальной теории относительности Эйнштейн продемонстрировал, что интервалы между событиями (как минимум в плоском пространстве-времени) можно измерить по формуле ds2 = – dt2 + dx2 + dy2 + dz2. Знак «минус» перед членом dt2 отличает время от любого из пространственных измерений и гарантирует, что скорость света для любых наблюдателей будет оставаться постоянной.
Можно представить себе Вселенную с иным количеством пространственных и временных измерений. Интервалы между событиями во Вселенной с двумя пространственными и одним временным измерением будут вычисляться по формуле ds2 = – dt2 + dx2 + dy2. Люди, живущие в такой Вселенной, даже подозревать не будут о существовании координаты z – они не будут понимать разницы между верхом и низом. Это будут жители Флатландии. На рис. 22.1 изображен ее житель, флатландец, у себя дома.
В доме есть дверь, и флатландец даже может искупаться в бассейне на заднем дворе. Но если ему вздумается попасть в бассейн, он должен будет выйти через переднюю дверь, перелезть через крышу и прямо с крыши нырнуть в бассейн. У него есть глаз: в передней части головы расположен хрусталик, а в задней – сетчатка. Вы уже заметили, что мы видим флатландца в разрезе. Мы можем полностью рассмотреть его внутренности. Можем поставить ему очень точный диагноз по поводу любого недомогания – ведь мы видим все его внутренние органы. У него есть рот, пищевод, желудок, но нет пищеварительного тракта, который проходил бы через все тело! Если бы такой тракт имелся, то флатландец бы попросту развалился пополам! Ему приходится переваривать пищу в желудке и отрыгивать продукты обмена. Флатландец держит газету. Наши газеты двумерные, они представляют собой листы бумаги; но его газета одномерная и напоминает по форме линию. Газетный текст записан азбукой Морзе, он состоит из точек и тире. Если флатландец захочет отправиться спать, то ему придется сделать обратное сальто в постель. Как должен работать его мозг? Во Флатландии невозможно представить себе перекрещивающиеся нейроны (или провода). Но электромагнитные сигналы во Флатландии могут пересекаться, так что вместо нейронов, передающих сигналы от клетки к клетке, здесь будут использоваться просто электромагнитные сигналы[36]. В принципе, у флатландца может быть мозг, но устроен этот мозг будет гораздо сложнее нашего.
В 1880 году Эдвин Эбботт написал чудесную книгу «Флатландия» о существах, обитающих в таком плоском мире. Повествование в этой книге велось от лица Квадрата[37].
Как бы выглядел мир, в котором существовало бы лишь одно пространственное измерение и время? Такой мир назывался бы Лайнландией (он также показан на рис. 22.1). Все объекты там выстроены в одну линию. Мир описывался бы формулой ds2 = – dt2 + dx2. Все люди походили бы на отрезки. Там могли бы жить Король, Королева, Принц и Принцесса, но, живя в Лайнландии, вы могли бы увидеть лишь тех, кто живет бок о бок с вами – справа и слева. Люди выглядели бы как точки. Вам потребовалось бы ладить с соседями – ведь больше вам не суждено было бы ни с кем встретиться. Представляется, что во Флатландии разумная жизнь могла бы возникнуть с большими затруднениями, а в Лайнландии она решительно невозможна.
Рис. 22.1. Флатландия и Лайнландия. Иллюстрация предоставлена Дж. Ричардом Готтом, адаптирована из Time Travel in Einstein’s Universe, Houghton Mifflin, 2001
Кроме того, можно вообразить такие варианты пространства-времени, где больше измерений, чем в нашем. Допустим, мы добавим одно пространственное измерение. Получится ds2 = – dt2 + dx2