Большой роман о математике. История мира через призму математики — страница 20 из 36

Арс Магна» (с лат. Ars Magna – «Великое искусство»), которая наконец пролила свет на решение уравнений третьей степени. Тарталья был взбешен и сильно оскорблен поступком Кардано и опубликовал свою версию. Но было уже слишком поздно. Кардано остался в истории как математик, победивший третью степень, а открытая формула получила свое название в его честь.

Отдельные части «Арс Магна», однако, вызывали некоторый скептицизм среди алгебраистов. В ряде случаев формула Кардано, по всей видимости, предполагает вычисление квадратного корня из отрицательных чисел. В середине уравнения может, например, появиться корень из –15, т. е. должно существовать число, квадрат которого равен –15. Но это невозможно, согласно правилу знаков Брахмагупты. Квадрат как положительного, так и отрицательного числа является положительным числом! Так, например, (-2) 2 = (-2) × (-2) = 4. Нет такого числа, квадрат которого может быть равен –15. Короче говоря, квадратные корни, встречающиеся в примерах Кардано, не существуют. Тем не менее, используя эти несуществующие числа в промежуточных рассуждениях, по методу Кардано, удается получить верный результат! Необычно и интригующе.

Еще один математик из Болоньи, Рафаэль Бомбелли, предположил, что квадратным корнем из отрицательных чисел вполне может быть совершенно новый вид чисел. Это и не положительные, и не отрицательные числа! Необычные числа, о которых ничего не известно, предположить существование которых до настоящего момента было невозможно. После появления нуля и отрицательных чисел огромное множество чисел снова собирается расширяться.

В конце жизни Бомбелли написал свою основную работу, «Алгебра», которая была опубликована в год его смерти (1572). Взяв за основу книгу «Арс Магна», он дополнил ее новыми элементами, которые назвал комплексными числами. Бомбелли сделал нечто подобное тому, что уже однажды совершил Брахмагупта, когда ввел понятие отрицательных чисел. Он описал правила, позволяющие выполнять различные действия с комплексными числами, включая возведение во вторую степень и нахождение отрицательных чисел.

Судьба комплексных чисел Бомбелли была во многом схожа с судьбой отрицательных чисел. Они также вызвали волну скепсиса и недоверия. И, так же как и отрицательные числа, их в конце концов признали революционным достижением в мире математики. Одним из таких скептиков в начале XVII в. был французский математик и философ Рене Декарт. Именно он дал этим числам название, которое мы используем до сих пор: мнимые числа.

Пройдет два столетия, прежде чем мнимые числа будут признаны всем математическим сообществом. Так они станут неотъемлемой частью современной науки. Помимо решения уравнений, эти числа будут применяться в физических науках, в том числе в изучении волновых явлений в электронике или квантовой физике. Без мнимых чисел появление многих современных технологий было бы невозможным.

Однако, в отличие от отрицательных, мнимые числа в основном остаются неизвестными за пределами научных кругов. Их сложно себе представить на интуитивном уровне, трудно спроектировать на простые физические явления. Если отрицательный результат еще можно представить как долг или дефицит, то для того, чтобы понять, что такое мнимые числа, придется отказаться от осознания чисел в количественных категориях. Эти числа неприменимы в повседневной жизни для подсчета яблок или овец.

Мнимые числа постепенно расширяли поле для исследований математиков. В конце концов, если достаточно только признать существование квадратных корней из отрицательных чисел для того, чтобы принять новый вид чисел, почему нельзя пойти дальше? Разве нельзя создавать неограниченное число новых чисел с новыми арифметическими свойствами. Нельзя ли тогда ввести новые, полностью независимые алгебраические структуры чисел, отличные от классических?

В XIX в. были сняты последние ограничения применения математических действий по отношению к любым числам. Таким образом, алгебраическая структура становится не более чем математической конструкцией, состоящей из элементов (которые мы можем назвать цифрами в определенных случаях) и операций, которые могут быть совершены в отношении этих элементов (которые могут быть названы сложением, умножением и т. д. в соответствующих случаях).

Такой подход привел к появлению многочисленных новых исследований. Новые, более или менее абстрактные алгебраические структуры уже были обнаружены, изучены, классифицированы. Учитывая масштабы задачи, математики Европы и мира начали обмениваться опытом. Даже сегодня многие алгебраические исследования продолжают проводиться по всему миру, и многие гипотезы остаются недоказанными.

Создайте собственную математическую теорию

Вы когда-нибудь мечтали, чтобы одна из теорем носила ваше имя, как теоремы Пифагора, Брахмагупты или аль-Каши? Тогда вам повезло, потому что я собираюсь рассказать, как создать и развивать собственную алгебраическую систему. Для этого вам понадобятся две составляющие: список элементов, а также действие, позволяющее производить с ними операции.

Возьмем, например, восемь элементов и отметим их следующими символами: ♥, ♦, ♣, ♠, ♪, ♫, ▲ и ☼. Нам также нужен будет знак для обозначения действия. Возьмем, например, ✳ и назовем его в честь итальянского ученого: бомбеллиация. Для определения результата бомбеллиации двух элементов мы должны построить соответствующую таблицу. Начертим таблицу, состоящую из восьми строк и восьми столбцов для наших восьми элементов, и заполним ее, помещая на пересечении двух символов результат из бомбеллиации.



Вуаля! Ваша теория готова, осталось только изучить ее. Посмотрев на пересечение второй строки и четвертого столбца, например, можно увидеть, что в результате бомбеллиации ♦ и ♠ получается ☼. Другими словами, ♦ ✳ ♠ = ☼. Вы даже можете решать уравнения в вашей теории. Например:

Найдите число, которое при бомбеллиации с дает ♫.

Чтобы найти решение этого уравнения, достаточно посмотреть на нашу таблицу. Можно сделать вывод, что у него есть два решения: ♦ и ♪, т. к. ♦ ✳ ♣ = ♫ и ♪ ✳ ♣ = ♫.

Однако будьте внимательны, потому что в нашей новой теории некоторые свойства, которые мы использовали раньше, могут стать ложными. Например, результат может отличаться в случае изменения порядка элементов в бомбеллиации: ♥ ✳ ♦ = ♪ в то время как ♦ ✳ ♥ = ♦. В этом случае говорят, что операция не коммутативная.

Присмотревшись внимательнее, вы обнаружите некоторые более общие свойства. Например, при бомбеллиации элемента с самим собой результат будет равен этому элементу: ♥ ✳ ♥ = ♥, ♦ ✳ ♦ = ♦, ♣ ✳ ♣ = ♣ и так далее. Эту закономерность можно считать первой теоремой нашей новой теории!

В общем, принцип должен быть вам понятен. Если вы хотите создать ваши собственные теоремы – пожалуйста. Разумеется, вы можете взять такое количество элементов, какое пожелаете. Даже бесконечное их число, если захотите. Вы можете создать более сложные системы, как и в случае целых чисел, которые не имеют специального символа, а составлены из десяти индийских цифр. Вы можете затем создать правила подсчета, которые будут выступать в роли аксиом в вашей теории. Например, определяя свойства вашей алгебраической системы, можно сделать операции коммутативными.

Разумеется, не стоит обманывать себя, рассчитывая на то, что ваша теория останется в истории. Не все математические модели одинаковые! Некоторые из них являются более полезными и важными, чем другие. Создавая таблицу с действиями случайным образом, помните: есть большая вероятность, что эта система окажется совершенно неинтересной. Если же это не так, то можно держать пари, что другие математики уже изучили ее до вас. Нужно, так или иначе, отдавать себе отчет в том, что математика – это призвание!

Как распознать интересную теорию? На протяжении всей истории для этого существовало два критерия, которыми руководствовались математики в своих исследованиях: применимость и красота.

Применимость – это, разумеется самый очевидный фактор. Возможность использовать результат проведенной работы – это первоочередной критерий с математической точки зрения. Числа полезны, так как и их помощью можно считать и осуществлять торговлю. Геометрия позволяет измерять различные величины. С помощью алгебры можно решать проблемы повседневной жизни.

Красота – это менее конкретная характеристика. Как математическая теория может быть красивой? Это еще можно понять в отношении геометрии, где определенные фигуры могут быть визуально оценены как произведения искусства. В качестве примера можно привести орнаменты из Месопотамии, Платоновы тела или мощение Альгамбры. Но в алгебре? Может ли алгебраическая структура в самом деле быть красивой?

Долгое время я считал, что понимание элегантности и поэзии математических объектов – это привилегия немногих специалистов, истинных ценителей, которые провели достаточно времени за изучением различных теорий и со зрелым пониманием вопроса могли бы поистине насладиться красотой математики. Я заблуждался и уже совсем скоро смог убедиться, что даже новички и очень маленькие дети могут осознать это чувство элегантности.

С одним очень ярким примером я однажды столкнулся на занятиях первоклассников. Детям в классе было около семи лет. Им необходимо требовалось распределить треугольники, квадраты, прямоугольники, пятиугольники, шестиугольники и фигуры других форм в соответствии с заданными критериями. Детям предложили подсчитывают число сторон и число вершин этих фигур. У треугольников было три стороны и три вершины, у квадратов и прямоугольников – четыре стороны и четыре вершины и так далее. При составлении этого списка дети быстро заметили теорему: многоугольник имеет равное количество сторон и вершин.

На следующей неделе для анализа были выбраны фигуры более причудливой формы, в том числе приведенный ниже пример.



Возникает вопрос: сколько сторон и сколько вершин у этой фигуры? Большинство в классе говорят, что четыре стороны и три вершины. Развернутый угол на рисунке выше не формирует вершины. Он не острый. Это вообще скорее впадина, чем вершина. Таким образом, в отношении этого вогнутого угла неприменимо утверждение о свойстве сторон и вершин многоугольников, описанное выше. Попр