Беломантия, или искусство гадания с помощью стрел, – это один из старейших способов принятия решения. Прикрепите к каждой из стрел один из вариантов ответа на вопрос, который вы задаете вашему богу, поместите их все в колчан, встряхните его и затем вытяните одну – это и будет ответ. Таким образом, например, поступил Навуходоносор II, царь Вавилона, когда выбирал врагов, которым он объявил войну в VI в. до н. э. Кроме стрел, выбираемые объекты могут принимать различные формы: цветные камешки, плитки, стержни или шарики. Древние римляне дали этим объектам название «жребий».
От этого слова происходит выражение «бросить жребий», а также слово «колдовство[20]», которое первоначально означало вмешательство человека в волю богов. Постепенно увеличивалось количество механизмов случайного выбора, которые приобрели множество различных форм. Жребий использовался в некоторых политических системах, таких как, например, в Афинах, чтобы выбрать пятьсот граждан, которые будут заседать в буле, или, несколько столетий спустя, в Венеции, для избрания дожей. Случайность наступления событий будет также отличным источником вдохновения для создателей игр. Так появились игра «орел или решка», игральные кости в форме Платоновых тел, а также карточные игры.
Именно благодаря появлению азартных игр, управляемых волей богов, в итоге ряд математиков заинтересовались данным вопросом. Они начали изучать вероятность наступления тех или иных случайных событий в будущем.
Все началось в середине XVII в., когда в 1635 г. математик и философ Марен Мерсенн основал Парижскую академию наук, которая впоследствии была преобразована во Французскую академию наук. Однажды в ходе дискуссии между учеными из разных слоев общества, писатель Антуан Гомбо, занимавшийся математикой в свободное время, поднял интересовавший его вопрос. Представим ситуацию, когда два игрока поставили на кон определенную сумму денег и после трех раундов счет оказался равным 2: 1 в пользу первого игрока. Если при таком счете они решают не продолжать игру, то в какой пропорции должен быть разделен игровой банк?
Среди присутствовавших в тот день ученых данным вопросом заинтересовались двое французских математиков, Пьер де Ферма и Блез Паскаль. После короткого обсуждения оба пришли к выводу, что три четверти банка должны вернуться к первому игроку, а оставшаяся четверть – ко второму. Чтобы прийти к такому выводу, ученые проанализировали все возможные сценарии развития игры, оценивая шансы каждого из игроков. Таким образом, гипотетически в следующем раунде первый игрок будет иметь 50 %-ный шанс выиграть игру, в то время как второй игрок будет иметь 50 %-ную вероятность сравнять счет. И если счет будет сравнен, в последующем раунде у игроков окажутся равные шансы на победу, т. е. вероятность каждого на победу будет равна 25 %. Можно схематично изобразить это на следующей схеме:
Таким образом, мы видим: вероятность победы первого игрока 75 %, второго – 25 %. Вывод, сделанный Паскалем и Ферма, заключается в том, что необходимо поделить игровой банк в соответствии с вероятностью победы: первый игрок – 75 %, а второй – оставшиеся 25 %.
Рассуждения французских ученых лягут в основу дальнейших исследований в этой области. Такой подход применим к большинству азартных игр. Швейцарский математик Якоб Бернулли был одним из первых, кто стал заниматься исследованиями в этой области и в конце XVII в. написал книгу под названием «Искусство предположений» (итал. Ars Conjectandi), опубликованную только после его смерти в 1713 г. В этой книге он привел анализ традиционных азартных игр и впервые сформулировал один из основополагающих принципов теории вероятности: закон больших чисел.
Этот закон подтверждает, что чем больше раз будет повторяться описанный выше прием, тем более точным окажется определение вероятности, стремящееся к своему пределу. Иными словами, если продолжать эти рассуждения в долгосрочной перспективе, средние значения перестают быть случайными.
Понять это явление очень несложно. Закон больших чисел можно разобрать на примере игры «орел или решка». Если монета сбалансирована, то вероятность выпадения одной из двух сторон равна 50 %, что может быть представлено на следующей гистограмме.
Теперь представьте, что вы бросили монету два раза и затем подсчитываете общее количество выпавших орлов и решек. Возможны три варианта: два орла, две решки, орел и решка. Есть большой соблазн предположить, что вероятность наступления этих трех событий одинакова, но это не так. На самом деле вероятность выпадения орла и решки равна 50 %, а выпадения двух орлов или двух решек – по 25 % каждая.
Этот дисбаланс обусловлен тем фактом, что две различные комбинации дают один и тот же конечный результат. Если дважды подбросить монету, фактически есть четыре возможных варианта: орел-орел, орел-решка, решка-орел и решка-решка. Варианты орел-решка и решка-орел дают один и тот же конечный результат: один орел и одна решка, в связи с чем вероятность выпадения такой комбинации в два раза больше. Игроки также знают, что если подбросить два игральных кубика, то выпавшая сумма будет с большей вероятностью равна 7, чем 12, потому что есть много комбинаций, сумма которых равна 7 (1 + 6, 2 + 5, 3 + 4, 4 + 3, 5 + 2 и 6 + 1) и только одна, дающая 12 (6 + 6).
Чем больше раз подбросишь монету, тем более выраженным становится это явление. Сценарии отклоняются от среднего значения, постепенно становятся исключительно редкими по сравнению со средними значениями.
Если вы подбросите монету десять раз, есть примерно 66 %-ная вероятность того, что выпадет от 4 до 6 орлов.
Если подбросить ее сто раз, то с вероятностью 96 % выпадет от 40 до 60 орлов. А если подбросить ее тысячу раз, то вероятность выпадения от 400 до 600 орлов достигнет 99,99999998 %.
Если построить гистограммы, соответствующие 10, 100 и 1000 подбрасываниям монеты, то можно заметить, что ближе к центру концентрируются более длинные столбцы, соответствующие наибольшей вероятности, а крайние варианты становятся невидимыми невооруженным глазом.
Гистограмма возможных комбинаций при 10 подбрасываниях
Гистограмма возможных комбинаций при 100 подбрасываниях
Гистограмма возможных комбинаций при 1000 подбрасываниях
Таким образом, закон больших чисел доказывает: при бесконечном повторении экспериментов со случайным исходом среднее арифметическое значение выборки и значение с наибольшей вероятностью выпадения совпадут.
Этот принцип лежит в основе всех опросов и других статистических приемов. Опросим 1000 человек, какой шоколад они предпочитают: темный или молочный. Если 600 ответят – черный, а 400 – молочный, высока вероятность того, что доля предпочтений населения, даже если оно состоит из миллионов человек, также будет близка к 60 %, предпочитающих темный шоколад, и 40 % – молочный. Если задать вопрос о вкусе случайно выбранного человека, то его ответ будет аналогом выпадения орла или решки. Отличие лишь в том, что орел и решка заменяются темным и молочным шоколадом.
Конечно, может оказаться, что все 1000 опрошенных будут любить темный шоколад или, наоборот, опросят всех тех, кто любит только молочный шоколад. Но вероятность наступления крайних случаев ничтожно мала, и закон больших чисел гарантирует, что при опросе достаточно большой выборки людей полученное среднее значение будет близко к среднему значению для всего населения.
При дальнейшем анализе различных сценариев и вероятности их наступления можно также установить доверительный интервал и оценить вероятность ошибки. Можно, например, сказать, что существует 95 %-ная вероятность того, что доля людей, предпочитающих темный шоколад, составляет от 57 до 63 %. Все объективные исследования должны сопровождаться данными об их точности.
В 1654 г. Блез Паскаль опубликовал книгу под названием «Трактат об арифметическом треугольнике». Он описывал треугольник, состоящий из ячеек, внутри каждой из которых содержатся числа.
Здесь представлены только первые семь строк, но треугольник может быть продолжен до бесконечности. Цифры в ячейках определяются двумя правилами. Во-первых, в крайних ячейках содержатся числа 1. Во-вторых, числа, записанные во внутренних ячейках, равны сумме чисел двух ячеек, расположенных непосредственно над ними. Например, число 6, записанное в ячейке на пятой строке, получено в результате сложения двух 3, которые расположены над ним.
На самом деле этот треугольник был известен еще задолго до того момента, когда им заинтересовался Паскаль. Персидские математики аль-Караджи и Омар Хайям открыли его еще в XI в. В то же время его свойства изучал в Китае Цзя Сян, чью работу продолжит в XIII в. Ян Хуэй. В Европе Тарталья и Виет также знали о его существовании. Тем не менее Блез Паскаль был первым, кто посвятил этому явлению такой полный и подробный трактат. Он также был первым, кто заметил тесную связь между этим треугольником и подсчетом вероятности.
Каждая строка треугольника Паскаля позволяет подсчитать количество возможных вариантов последовательности событий с двумя вариантами, как, например, орел и решка. Если подбросить монетку три раза, то получится восемь вариантов комбинаций: орел-орел-орел, орел-орел-решка, орел-решка-орел, орел-решка-решка, решка-орел-орел, решка-орел-решка, решка-решка-орел и решка-решка-решка. Проводя анализ возможных комбинаций, можно прийти к следующим выводам:
• 1 комбинация с тремя орлами;
• 3 комбинации с двумя орлами и одной решкой;
• 3 комбинации с одним орлом и двум решкам;
• 1 комбинация с тремя решками.
Данная последовательность чисел, 1–3–3–1, точно соответствует четвертой линии треугольника. Это не случайность, что и было доказано Паскалем.
Если, например, посмотреть на шестую строчку, можно увидеть, что если подбросить монету пять раз, то в 10 случаях выпадут 2 орла и 3 решки. Двигаясь вниз по треугольнику, можно оценить варианты комбинаций при десяти подбрасываниях монеты: они находятся на 11-й строчке. Вероятности для ста бросков будут находиться на 101-й строчке и так далее. С помощью треугольника Паскаля можно легко проверить представленные выше гистограммы. Без этого последующие числа были бы настолько велики, что совсем скоро их было бы невозможно перечислить по отдельности.