Для испытаний были выделены только что принятая в состав флота подлодка SS-262 «Маскеллэндж» и спасательное судно АМ-22 «Виджэн», имевшее на борту водолазное оборудование. В качестве «мишени» был выбран уходящий на 30 метров под воду скалистый обрыв на островке Кахоолаве в центральной части Гавайского архипелага. Утром 31 августа 1943 г. подлодка вышла на дистанцию 800 м от берега и произвела пуск боевой торпеды по подводной скале. Контактный взрыватель сработал штатно, боевая часть взорвалась. Лодка сменила позицию и произвела второй пуск. Снова взрыв.
Обрывистое южное побережье гавайского острова Кахоолаве, где происходили испытания.
Руководивший процессом начальник торпедно-артиллерийской службы соединения капитан 2-го ранга Артур Г. Тейлор уже собирался прекратить бессмысленный расход дорогих и дефицитных боеприпасов, но напросившийся участвовать в этих испытаниях командир «Тинозы» капитан 3-го ранга Лоурэнс Дэспит настоял на продолжении, и его настойчивость была вознаграждена. Третья торпеда изобразила до боли знакомый Дэспиту всплеск, вызванный не взрывом 230 кг тротила, а всего лишь разрывом резервуара со сжатым воздухом. Рискуя жизнью, водолазы с «Виджена», возглавляемые лично капитаном 1-го ранга Момсеном, на 30-метровой глубине демонтировали покорёженную головную часть торпеды, обезвредили её и подняли на поверхность. В тот же день она была доставлена в минно-торпедную мастерскую базы подлодок в Пёрл-Харборе.
Изучение взрывателя поставило специалистов в тупик. Система находилась на боевом взводе, так что проблемы с предохранительным механизмом можно было исключить. «Инерционное кольцо» сработало штатно, и боевая пружина послала ударник к капсюлям-воспламенителям, но, судя по всему, удар бойков оказался слишком слабым и не привёл к наколу капсюлей. Боевую пружину, ударник и даже капсюли переставили на другой взрыватель и спустили его вручную. Капсюли благополучно сработали. Словом, теперь было точно известно, что проблема существует, однако в чём именно она заключается – нужно было ещё только выяснить.
Схема работы инерционных взрывателей Mark 4 и Mark 6 Mod. 1:
1. Детонатор, 2. Капсюль, 3. Боёк, 4. Ударник, 5. Боевая пружина, 6. Запирающий шарик, 7. Спусковой колпачок, 8. Инерционное кольцо.
Продолжать обстрел береговых скал торпедами было бессмысленно. Во-первых, это было слишком затратно, да и дефицит торпед всё ещё никуда не делся, а во-вторых – вряд ли это дало бы какую-либо дополнительную информацию. Требовалось изыскать способ стабильно разгонять если не торпеды, то хотя бы головные части со взрывателями до скорости в 46 узлов [85 км/ч] на суше, «в контролируемых экспериментальных условиях».
Офицеры-подводники быстро сообразили, что самый простой, дешёвый и, главное, самый надёжный способ стабильно разгонять объёкты до одной и той же скорости – это просто ронять их с одной и той же высоты. Для разгона до скорости 46 узлов, как нетрудно посчитать, требовалась высота сброса 28,5 м (сопротивлением воздуха в данном случае можно пренебречь). В крупной военно-морской базе, какой являлся Пёрл-Харбор, хватало больших портальных кранов, а кроме того там были ещё и сухие доки, в том числе и большие «линкорные», с глубиной камеры в 14 м – уже половина требуемой высоты.
Камера «линкорного» сухого дока №4 в Пёрл-Харборе
В одном из таких доков и провели испытания, используя в качестве «мишени» уложенную на дно плиту броневой стали, которую можно было устанавливать под наклоном, имитируя различные углы встречи с целью. Поскольку в практических головных частях отсутствовало посадочное место под взрыватель, то использовались разряженные боевые головные части, в которых заряд взрывчатки заменялся балластом. Всё это тоже было достаточно недешёвым удовольствием – головная часть торпеды со взрывателем стоила около 1000 долларов — во многом за счёт цены оказавшейся бесполезной «магнитной составляющей». Но, в любом случае, это было в 10 раз дешевле, чем расстреливать боевые торпеды ценою в четверть среднего танка или одномоторного истребителя каждая.
Испытания позволили выяснить, что в случае «идеального» угла встречи в 90° вероятность осечки взрывателя достигала 70%. При угле встречи в 45° количество осечек уменьшалось вдвое, а при 30° и менее взрыватель срабатывал безотказно. Это очень хорошо соответствовало случаю с «Тинозой», когда взорвались лишь торпеды, пущенные с неудобного угла «вдогон» танкеру, в то время как пуски, произведённые с идеальной позиции перпендикулярно в борт неподвижного судна, привели лишь к серии осечек.
Боевая головная часть торпеды Mark 14–3A со взрывателем
Ну, а главное — выяснилась и причина этих осечек. Как ни странно, они были вызваны тем же фактором, что и решённая уже проблема с глубиной хода. А именно – резким увеличением скорости новой торпеды. Контактная (или «инерционная») составляющая комбинированного магнитно-контактного взрывателя Mark 6 была полностью, без каких либо изменений унаследована от предыдущей чисто контактной модели Mark 4, разработанной ещё в 1910-х годах. На 1943 год взрыватели Mark 4 продолжали успешно и без нареканий использоваться не только на устаревших подлодочных торпедах Mark 10, но и на авиаторпедах Mark 13, и даже новейших электрических Mark 18. Опять сработал принцип «зачем улучшать то, что и так прекрасно работает», причём в данном случае речь опять шла о конструкции, многократно испытанной, в том числе и в боевых условиях Первой мировой.
Однако то, что хорошо работало на скоростях встречи с целью в 30–35 узлов [55–65 км/ч], переставало работать на 46 узлах [85 км/ч]. Проблема состояла в том, что канал, по которому ударник двигался к капсюлю, располагался перпендикулярно ходу торпеды. Поэтому при столкновении с бортом цели инерция прижимала ударник к «передней» стенке канала в момент движения к капсюлю. Увеличение скорости столкновения более чем на треть усиливало этот прижим, а значит и силу трения, тормозившую ударник, более чем в 1,7 раза. При столкновении под острым углом («скользящий удар») время торможения со скорости в 46 узлов до нуля было больше, что уменьшало перегрузку, так что импульса боевой пружины всё ещё хватало для того, чтобы боёк наколол капсюль. Но при столкновении под углом, близким к 90°, то есть при минимальном времени торможения и максимальной перегрузке, чаще побеждала уже сила трения.
В некоторых статьях на тему «Большого торпедного скандала» можно встретить версию, что осечки были вызваны тем, что в результате перегрузки ударник отклонялся в сторону, из-за чего бойки просто не попадали по капсюлям. Но, как нетрудно убедиться из представленной выше схемы, подобный вариант был невозможен просто конструктивно.
Безотказно работавший при малых скоростях контактный взрыватель Mark 4 (находится в состоянии срабатывания). Его конструкция была без изменений использована при создании магнитно-контактного взрывателя Mark 6 Mod 1.
Строго говоря, ветераны-конструкторы, разрабатывавшие взрыватели предыдущего поколения ещё в 1910-х годах, postfactum вспомнили, что подобная проблема возникала уже у них – даже на меньших скоростях. Однако тогда она была быстро выявлена в ходе натурных испытаний и «побеждена» банальным усилением боевой пружины. А в случае комбинированного магнитно-контактного взрывателя Mark 6, как мы помним, сдаточные испытания ограничились одним-единственным успешным срабатыванием магнитного детектора нового взрывателя в ходе одной-единственной серии испытаний в 1926 году. Его контактная («инерционная») составляющая вообще никогда специально не испытывалась.
Результаты стрельбы по прибрежным скалам Кахоолаве и упражнений в сухом доке Пёрл-Харбора были сообщены специалистам Торпедной станции в Ньюпорте. Прижатые в очередной раз к стенке, те вынуждены были произвести подобные испытания и у себя. Результатом стало очередное признание наличия проблемы и уверения в том, что главные и единственные американские специалисты по торпедам работают над её решением. Текущие рекомендации, содержавшиеся в ответе от 16 сентября, свелись к предложению переключить пока все торпеды на «дальнобойный режим», то есть на пониженную скорость в 30,5 узлов, при которой контактный взрыватель должен работать без сбоев.
Как нетрудно догадаться, приступа энтузиазма данная рекомендация у подводников не вызвала. В штабе подводных сил Тихоокеанского флота США мрачно шутили, что в следующем своём послании Управление вооружений скорей всего предложит вернуться если не к тарану а-ля «Наутилус» Жюля Верна (или предложенному в полемическом запале контр-адмиралом Локвудом «крюку для срывания листов обшивки»), то, как минимум, к старым, добрым и предельно надёжным шестовым минам образца XIX века.
Было предложено несколько вариантов решения проблемы, но самыми простыми и очевидными стали два из них. Сила, прижимавшая ударник к стенке канала, была пропорциональна массе ударника и квадрату скорости, но если со скоростью ничего поделать нельзя, то массу вполне можно было уменьшить. Поэтому в первом варианте предлагалось облегчить уже имевшийся ударник высверливанием его изнутри и фрезерованием канавок-«долов» снаружи. Во втором варианте предлагалось просто сделать новый ударник, но уже не из бронзы, а из лёгкого алюминиевого сплава. В конце концов, решили, что кашу маслом не испортишь, и объединили оба эти варианта. Цена новой детали составила менее одного доллара. Как гласит красивая легенда, материалом для новых ударников послужили лопасти винтов японских самолётов, сбитых во время рейда на Пёрл-Харбор, хотя по многим причинам это представляется маловероятным.
Переделка ударника взрывателя Mark 6 Mod. 1 с целью его облегчения
21 сентября 1943 года подводная лодка SS-232 «Хэлибат» под командованием капитана 3-го ранга Игнатиуса Гэлэнтина прибыла всё к тому же островку Кахоолаве, неся на борту первые торпеды, снабжённые взрывателями с облегчёнными ударниками. Из семи торпед, выпущенных по многострадальному подводному обрыву сознательно под прямым углом, не взорвалась лишь одна. Результаты испытаний были признаны удовлетворительными и были немедленно доложены Главкому Тихоокеанского флота адми