Бонусные годы. Индивидуальный план продления молодости на основе последних научных открытий — страница 30 из 101

56. Romieu I., Ferrari P., Rinaldi S. et al. Dietary glycemic index and glycemic load and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr. 2012 Aug;96(2):345-55. doi: 10.3945/ajcn.111.026724. www. ncbi.nlm.nih.gov/pubmed/22760570 (дата обращения: 28.12.2020).

57. Thomas D., Elliott E.J. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database Syst Rev. 2009 Jan 21;2009(1):CD006296. doi: 10.1002/14651858.CD006296.pub2. www.ncbi.nlm.nih.gov/pubmed/19160276 (дата обращения: 28.12.2020).

58. Thomas D., Elliott E.J, Baur L. Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst Rev. 2007 Jul 18;(3):CD005105. doi: 10.1002/14651858.CD005105.pub2. www.ncbi.nlm.nih.gov/pubmed/17636786 (дата обращения: 28.12.2020).

59. Connolly M.L., Tuohy K.M., Lovegrove J.A. Wholegrain oat-based cereals have prebiotic potential and low glycaemic index. Br J Nutr. 2012 Dec 28;108(12):2198-206. doi: 10.1017/S0007114512000281. www.ncbi.nlm.nih.gov/pubmed/22360862 (дата обращения: 28.12.2020).

60. Castro-Quezada I., Sanchez-Villegas A., Estruch R. et al. A high dietary glycemic index increases total mortality in a Mediterranean population at high cardiovascular risk. PLoS One. 2014 Sep 24;9(9):e107968. doi: 10.1371/journal.pone.0107968. www.ncbi. nlm.nih.gov/pubmed/25250626 (дата обращения: 28.12.2020).

61. Appleby P.N., Crowe F.L, Bradbury K.E. et al. Mortality in vegetarians and comparable nonvegetarians in the United Kingdom. The American Journal of Clinical Nutrition. 2016 Jan;103(1):218–230. https://doi.org/10.3945/ajcn.115.119461 https:// academic.oup.com/ajcn/article/103/1/218/4569305 (дата обращения: (дата обращения: 29.12.2020).

62. Poff A.M., Ari C., Seyfried T.N. et al. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS One. 2013 Jun 5;8(6):e65522. doi: 10.1371/journal.pone.0065522. www.ncbi.nlm.nih.gov/ pubmed/23755243 (дата обращения: 28.12.2020).

63. Rieger J., B hr O., Maurer G.D. et al. ERGO: a pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol. 2014 Jun;44(6):1843-52. doi: 10.3892/ ijo.2014.2382. Epub 2014 Apr 11. www.ncbi.nlm.nih.gov/pubmed/24728273 (дата обращения: 29.12.2020).

64. Gardner C.D., Trepanowski J.F., Del Gobbo L.C. et al. Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion. The DIETFITS Randomized Clinical Trial: JAMA. 2018 Feb 20;319(7):667–679. doi: 10.1001/jama.2018.0245. www.ncbi.nlm.nih. gov/pubmed/29466592 (дата обращения: 29.12.2020).

65. Howick J., Glasziou P., Aronson J.K. The evolution of evidence hierarchies: what can Bradford Hill’s ‘guidelines for causation’ contribute? J R Soc Med. 2009 May;102(5):186-94. doi: 10.1258/jrsm.2009.090020. www.ncbi.nlm.nih.gov/pubmed/19417051 (дата обращения: 29.12.2020).

66. ВОЗ. Вопросы и ответы о канцерогенности красного мяса и мясной продукции. Октябрь 2015 г. (Электронный ресурс) URJ: www.who.int/features/qa/cancer-red-meat/ru (дата обращения: 29.12.2020).

67. Pierozan P., Andersson M, Brandt I. et al. The environmental neurotoxin 0-N-methylamino-L-alanine inhibits melatonin synthesis in primary pinealocytes and a rat model. J Pineal Res. 2018 Aug;65(1):e12488. doi: 10.1111/jpi.12488. www.ncbi.nlm. nih.gov/pubmed/29528516 (дата обращения: 29.12.2020).

68. Engeset D., Braaten T., Teucher B. et al. Fish consumption and mortality in the European Prospective Investigation into Cancer and Nutrition cohort. Eur J Epidemiol. 2015 Jan;30(1):57–70. doi: 10.1007/s10654-014-9966-4. www.ncbi.nlm.nih.gov/ pubmed/25377533 (дата обращения: 29.12.2020).

69. Abdelhamid A.S., Brown T.J., Brainard J.S. et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018 Jul 18;7(7):CD003177. doi: 10.1002/14651858.CD003177.pub3. www.ncbi. nlm.nih.gov/pubmed/30019766 (дата обращения: 29.12.2020).

70. Baye E., de Courten M.P., Walker K. et al. Effect of dietary advanced glycation end products on inflammation and cardiovascular risks in healthy overweight adults: a randomised crossover trial. Sci Rep. 2017 Jun 23;7(1):4123. doi: 10.1038/s41598-017-04214-6. www.ncbi.nlm.nih.gov/pubmed/28646140 (дата обращения: 29.12.2020).

71. Kim Y., Keogh J.B., Clifton P.M. Effects of Two Different Dietary Patterns on Inflammatory Markers, Advanced Glycation End Products and Lipids in Subjects without Type 2 Diabetes: A Randomised Crossover Study. Nutrients. 2017 Mar 29;9(4):336. doi: 10.3390/nu9040336. www.ncbi.nlm.nih.gov/pubmed/28353655 (дата обращения: 29.12.2020).

72. Lublin A., Isoda F., Patel H. et al. FDA-approved drugs that protect mammalian neurons from glucose toxicity slow aging dependent on cbp and protect against proteotoxicity. PLoS One. 2011;6(11):e27762. doi: 10.1371/journal.pone.0027762. www.ncbi.nlm.nih.gov/pubmed/22114686 (дата обращения: 29.12.2020).

73. Bridi J.C., Barros A.G., Sampaio L.R. et al. Lifespan Extension Induced by Caffeine in Caenorhabditis elegans is Partially Dependent on Adenosine Signaling. Front Aging Neurosci. 2015 Dec 8;7:220. doi: 10.3389/fnagi.2015.00220. www.ncbi.nlm.nih.gov/ pubmed/26696878 (дата обращения: 29.12.2020).

74. Poole R., Kennedy O.J., Roderick P. et al. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017 Nov 22;359:j5024. doi: 10.1136/bmj.j5024. www.ncbi.nlm.nih.gov/pubmed/29167102 (дата обращения: 29.12.2020).

75. Choi H.K., Curhan G. Coffee, tea, and caffeine consumption and serum uric acid level: the third national health and nutrition examination survey. Arthritis Rheum. 2007 Jun 15;57(5):816-21. doi: 10.1002/art.22762. www.ncbi.nlm.nih.gov/pubmed/17530681 (дата обращения: 29.12.2020).

76. Zhang Y., Yang T., Zeng C. et al. Is coffee consumption associated with a lower risk of hyperuricaemia or gout? A systematic review and meta-analysis. BMJ Open. 2016 Jul 8;6(7):e009809. doi: 10.1136/bmjopen-2015-009809. www.ncbi.nlm.nih.gov/ pubmed/27401353 (дата обращения: 29.12.2020).

77. Herraiz T., Chaparro C. Human monoamine oxidase enzyme inhibition by coffee and beta-carbolines norharman and harman isolated from coffee. Life Sci. 2006 Jan 18;78(8):795–802. doi: 10.1016/j.lfs.2005.05.074. www.ncbi.nlm.nih.gov/ pubmed/16139309 (дата обращения: 29.12.2020).

78. Van Gelder B.M., Buijsse B., Tijhuis M. et al. Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE Study. Eur J Clin Nutr. 2007 Feb;61(2):226-32. doi: 10.1038/sj.ejcn.1602495. www.ncbi.nlm.nih.gov/ pubmed/16929246 (дата обращения: 29.12.2020).

79. Ding M., Bhupathiraju S.N., Chen M. et al. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response metaanalysis. Diabetes Care. 2014 Feb;37(2):569-86. doi: 10.2337/dc13-1203. www.ncbi. nlm.nih.gov/pubmed/24459154 (дата обращения: 29.12.2020).

80. Wang L., Shen X., Y. et al. Coffee and caffeine consumption and depression: A meta-analysis of observational studies. Aust N Z J Psychiatry. 2016 Mar;50(3): 228-42. doi: 10.1177/0004867415603131. www.ncbi.nlm.nih.gov/pubmed/26339067 (дата обращения: 29.12.2020).

81. Lucas M., O’Reilly E.J., Pan A. et al. Coffee, caffeine, and risk of completed suicide: results from three prospective cohorts of American adults. World J Biol Psychiatry. 2014 Jul;15(5):377-86. doi: 10.3109/15622975.2013.795243. www.ncbi.nlm.nih.gov/ pubmed/23819683 (дата обращения: 29.12.2020).

82. Kennedy O.J., Roderick P., Buchanan R. et al. Systematic review with metaanalysis: coffee consumption and the risk of cirrhosis. Aliment Pharmacol Ther. 2016 Mar;43(5):562-74. doi: 10.1111/apt.13523. www.ncbi.nlm.nih.gov/pubmed/26806124 (дата обращения: 29.12.2020).

83. Malerba S., Turati F., Galeone C. et al. A meta-analysis of prospective studies of coffee consumption and mortality for all causes, cancers and cardiovascular diseases. Eur J Epidemiol. 2013 Jul;28(7):527-39. doi: 10.1007/s10654-013-9834-7. www.ncbi. nlm.nih.gov/pubmed/23934579 (дата обращения: 29.12.2020).

84. Cardin R., Piciocchi M., Martines D. et al. Effects of coffee consumption in chronic hepatitis C: a randomized controlled trial. Dig Liver Dis. 2013 Jun;45(6):499–504. doi: 10.1016/j.dld.2012.10.021. www.ncbi.nlm.nih.gov/pubmed/23238034 (дата обращения: 29.12.2020).

85. Wijarnpreecha K., Thongprayoon C., Thamcharoen N. et al. Association between coffee consumption and risk of renal cell carcinoma: a meta-analysis. Intern Med J. 2017 Dec;47(12):1422–1432. doi: 10.1111/imj.13621. www.ncbi.nlm.nih.gov/ pubmed/28892303 (дата обращения: 29.12.2020).

86. Lafranconi A., Micek A., De Paoli P. et al. Coffee Intake Decreases Risk of Postmenopausal Breast Cancer. A Dose-Response Meta-Analysis on Prospective Cohort Studies: Nutrients. 2018 Jan 23;10(2):112. doi: 10.3390/nu10020112. www. ncbi.nlm.nih.gov/pubmed/29360766 (дата обращения: 29.12.2020).

87. Guessous I., Dobrinas M., Kutalik Z. et al. Caffeine intake and CYP1A2 variants associated with high caffeine intake protect non-smokers from hypertension. Hum Mol Genet. 2012 Jul 15;21(14):3283-92. doi: 10.1093/hmg/dds137. www.ncbi.nlm.nih.gov/ pubmed/22492992 (дата обращения: 29.12.2020).

88. Cornelis M.C., El-Sohemy A., Kabagambe E.K., Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006 Mar 8;295(10):1135-41. doi: 10.1001/jama.295.10.1135. www.ncbi.nlm.nih.gov/pubmed/16522833 (дата обращения: 29.12.2020).

89. Palatini P., Benetti E., Mos L. et al. Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients. Eur J Epidemiol. 2015 Mar;30(3):209-17. doi: 10.1007/s10654-015-9990-z. www.ncbi. nlm.nih.gov/pubmed/25595320 (дата обращения: 29.12.2020).