Бонусные годы. Индивидуальный план продления молодости на основе последних научных открытий — страница 95 из 101

135. Yeomans M.R., Milton M.R., Chambers L. Additive effects of sensory-enhanced satiety and memory for recent eating on appetite. Appetite. 2017 Oct 1;117:335–341. doi: 10.1016/j.appet.2017.07.018. www.ncbi.nlm.nih.gov/pubmed/28729200 (дата обращения: 28.01.2021).

136. Martin A.A., Davidson T.L., McCrory M.A. Deficits in episodic memory are related to uncontrolled eating in a sample of healthy adults. Appetite. 2018 May 1;124:33–42. doi: 10.1016/j.appet.2017.05.011. www.ncbi.nlm.nih.gov/pubmed/28479407 (дата обращения: 28.01.2021).

137. Thomas E.A., Higgins J., Bessesen D.H. et al. Usual breakfast eating habits affect response to breakfast skipping in overweight women. Obesity (Silver Spring). 2015 Apr;23(4):750-9. doi: 10.1002/oby.21049. www.ncbi.nlm.nih.gov/pubmed/25755093 (дата обращения: 28.01.2021).

138. Garaulet M., Gomez-Abellan P. Timing of food intake and obesity: a novel association. Physiol Behav. 2014 Jul;134:44–50. doi: 10.1016/j.physbeh.2014.01.001. www.ncbi.nlm.nih.gov/pubmed/24467926 (дата обращения: 28.01.2021).

139. No authors listed. Erratum for PMID 21180585. Therap Adv Gastroenterol. 2012 Sep;5(5):371. doi: 10.1177/1756283X10363751. www.ncbi.nlm.nih.gov/ pubmed/22973420 (дата обращения: 28.01.2021).

140. Schiavo-Cardozo D., Lima M.M., Pareja J.C., Geloneze B. Appetite-regulating hormones from the upper gut: disrupted control of xenin and ghrelin in night workers. Clin Endocrinol (Oxf). 2013 Dec;79(6):807-11. doi: 10.1111/cen.12114. www.ncbi.nlm. nih.gov/pubmed/23199168 (дата обращения: 28.01.2021).

141. Hutchison A.T., Wittert G.A., Heilbronn L.K. Matching Meals to Body Clocks-Impact on Weight and Glucose Metabolism. Nutrients. 2017 Mar 2;9(3):222. doi: 10.3390/ nu9030222. www.ncbi.nlm.nih.gov/pubmed/28257081 (дата обращения: 28.01.2021).

142. Beleigoli A.M., Diniz M.D.F.H., Boersma E. et al. The Effects of Weight and Waist Change on the Risk of Long-Term Mortality in Older Adults- The Bambui (Brazil) Cohort Study of Aging. J Nutr Health Aging. 2017;21(8):861–866. doi: 10.1007/s12603-016-0858-z. www.ncbi.nlm.nih.gov/pubmed/28972237 (дата обращения: 28.01.2021).

143. Afkarian M., Zelnick L.R., Hall Y.N. et al. Clinical Manifestations of Kidney Disease Among US Adults With Diabetes, 1988–2014. JAMA. 2016 Aug 9;316(6):602-10. doi: 10.1001/jama.2016.10924. www.ncbi.nlm.nih.gov/pubmed/27532915 (дата обращения: 28.01.2021).

144. Abdulkader R.C.R.M., Burdmann E.A., Lebrao M.L. et al. Aging and decreased glomerular filtration rate: An elderly population-based study. PLoS One. 2017 Dec 19;12(12):e0189935. doi: 10.1371/journal.pone.0189935. www.ncbi.nlm.nih.gov/ pubmed/29261774 (дата обращения: 28.01.2021).

145. Mula-Abed WA, Al Rasadi K, Al-Riyami D. Estimated Glomerular Filtration Rate (eGFR): A Serum Creatinine-Based Test for the Detection of Chronic Kidney Disease and its Impact on Clinical Practice. Oman Med J. 2012;27(2):108-13. doi: 10.5001/omj.2012.23. https://pubmed.ncbi.nlm.nih.gov/22496934/. (дата обращения: 28.01.2021).

146. Das S.K., Roy D.K., Chowdhury A.A. et al. Correlation of eGFR By MDRD and CKD-EPI Formula with Creatinine Clearance Estimation in CKD Patients and Healthy Subjects.

Mymensingh Med J. 2021;30(1):35–42.. doi: 10.7326/0003-4819-145-4200608150-00004. https://pubmed.ncbi.nlm.nih.gov/33397848/ (дата обращения: 28.01.2021).

147. Donfrancesco C., Palleschi S., Palmieri L. et al. Estimated glomerular filtration rate, all-cause mortality and cardiovascular diseases incidence in a low risk population: the MATISS study. PLoS One. 2013 Oct 16;8(10):e78475. doi: 10.1371/journal.pone.0078475. www.ncbi.nlm.nih.gov/pubmed/24147135 (дата обращения: 28.01.2021).

148. Zambon S., Maggi S., Zanoni S. et al. Association of single measurement of estimated glomerular filtration rate and non-quantitative dipstick proteinuria with all-cause and cardiovascular mortality in the elderly. Results from the Progetto Veneto Anziani (Pro.V.A.) Study. Atherosclerosis. 2012 Jan;220(1):201-7. doi: 10.1016/j. atherosclerosis.2011.09.023. www.ncbi.nlm.nih.gov/pubmed/22018644 (дата обращения: 28.01.2021).

149. Oh S.W., Baek S.H., Kim Y.C. et al. Mild decrease in estimated glomerular filtration rate and proteinuria are associated with all-cause and cardiovascular mortality in the general population. Nephrol Dial Transplant. 2012 Jun;27(6):2284-90. doi: 10.1093/ ndt/gfr622. www.ncbi.nlm.nih.gov/pubmed/22140122 (дата обращения: 28.01.2021).

150. Klahr S., Schreiner G., Ichikawa I. The progression of renal disease. N Engl J Med. 1988 Jun 23;318(25):1657-66. doi: 10.1056/NEJM198806233182505. www. ncbi.nlm.nih.gov/pubmed/3287163 (дата обращения: 28.01.2021).

151. Border W.A., Ruoslahti E. Transforming growth factor-beta in disease: the dark side of tissue repair. J Clin Invest. 1992 Jul;90(1):1–7. doi: 10.1172/JCI115821. www. ncbi.nlm.nih.gov/pubmed/1634602 (дата обращения: 28.01.2021).

152. Mehta T., Buzkova P., Kizer J.R. et al. Higher plasma transforming growth factor (TGF)-p is associated with kidney disease in older community dwelling adults. BMC Nephrol. 2017 Mar 21;18(1):98. doi: 10.1186/s12882-017-0509-6. www.ncbi. nlm.nih.gov/pubmed/28327102 (дата обращения: 28.01.2021).

153. Yamamoto T., Noble N.A., Miller D.E., Border W.A. Sustained expression of TGF-beta 1 underlies development of progressive kidney fibrosis. Kidney Int. 1994 Mar;45(3):916-27. doi: 10.1038/ki.1994.122. www.ncbi.nlm.nih.gov/pubmed/8196298 (дата обращения: 28.01.2021).

154. Okuda S., Languino L.R., Ruoslahti E., Border W.A. Elevated expression of transforming growth factor-beta and proteoglycan production in experimental glomerulonephritis. Possible role in expansion of the mesangial extracellular matrix. J Clin Invest. 1990 Aug;86(2):453-62. doi: 10.1172/JCI114731. www.ncbi.nlm.nih.gov/ pubmed/2200803 (дата обращения: 28.01.2021).

155. Tamaki K., Okuda S., Ando T. et al. TGF-beta 1 in glomerulosclerosis and interstitial fibrosis of adriamycin nephropathy. Kidney Int. 1994 Feb;45(2):525-36. doi: 10.1038/ki.1994.68. www.ncbi.nlm.nih.gov/pubmed/8164441 (дата обращения: 28.01.2021).

156. Thomas D., Elliott E.J. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database Syst Rev. 2009 Jan 21;2009(1):CD006296. doi: 10.1002/14651858.CD006296.pub2. www.ncbi.nlm.nih.gov/pubmed/19160276 (дата обращения: 28.01.2021).

157. Feng X., Luo Z., Ma L. et al. Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR- /AMPK pathway. J Cell Mol Med. 2011 Jul;15(7):1572-81. doi: 10.1111/j.1582–4934.2010.01085.x. www. ncbi.nlm.nih.gov/pubmed/20477906 (дата обращения: 28.01.2021).

158. Недогода С.В. Cартаны второго поколения: расширение терапевтических возможностей. РФК 2011;7(4):477–482. (Электронный ресурс) URL: www.rpcardio. com/jour/article/viewFile/865/898 (дата обращения: 28.01.2021).

159. Barnett A.H., Bain S.C., Bouter P. et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med. 2004 Nov 4;351(19):1952-61. doi: 10.1056/NEJMoa042274. www.ncbi.nlm.nih.gov/ pubmed/15516696 (дата обращения: 08.03.2021).

160. Makino H., Haneda M., Babazono T. et al. Microalbuminuria reduction with telmisartan in normotensive and hypertensive Japanese patients with type 2 diabetes: a post-hoc analysis of The Incipient to Overt: Angiotensin II Blocker, Telmisartan, Investigation on Type 2 Diabetic Nephropathy (INNOVATION) study. Hypertens Res. 2008 Apr;31(4):657-64. doi: 10.1291/hypres.31.657. www.ncbi.nlm.nih.gov/pubmed/18633177 (дата обращения: 28.01.2021).

161. Hoogwerf B.J., Young J.B. The HOPE study. Ramipril lowered cardiovascular risk, but vitamin E did not. Cleve Clin J Med. 2000 Apr;67(4):287-93. doi: 10.3949/ ccjm.67.4.287. www.ncbi.nlm.nih.gov/pubmed/10780101 (дата обращения: 28.01.2021).

162. Kester M., Karpa K.D., Vrana K.E. 8 – Cardiovascular System. Elsevier’s Integrated Review Pharmacology (2nd Edition). 2012, Pages 125–151. https://doi. org/10.1016/B978-0-323-07445-2.00008-2. https://linkinghub.elsevier.com/retrieve/ pii/B9780323074452000082

163. Han S.J., Kim H.J., Kim D.J. et al. Effects of pentoxifylline on proteinuria and glucose control in patients with type 2 diabetes: a prospective randomized double-blind multicenter study. Diabetol Metab Syndr. 2015 Jul 19;7:64. doi: 10.1186/s13098-015-0060-1. www.ncbi.nlm.nih.gov/pubmed/26300986 (дата обращения: 28.01.2021).

164. Roozbeh J., Banihashemi M.A., Ghezlou M. et al. Captopril and combination therapy of captopril and pentoxifylline in reducing proteinuria in diabetic nephropathy. Ren Fail. 2010 Jan;32(2):172-8. doi: 10.3109/08860221003602645. www.ncbi.nlm.nih. gov/pubmed/20199178 (дата обращения: 28.01.2021).

165. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. WHO. (Электронный ресурс) URL: www.who.int/vmnis/indicators/ haemoglobin.pdf (дата обращения: 28.01.2021).

166. Janz T.G., Johnson R.L., Rubenstein S.D. Anemia in the emergency department: evaluation and treatment. Emerg Med Pract. 2013 Nov;15(11):1-15; quiz 15-6. www. ncbi.nlm.nih.gov/pubmed/24716235 (дата обращения: 28.01.2021).

167. Lanier J.B., Park J.J., Callahan R.C. Anemia in Older Adults. Am Fam Physician. 2018 Oct 1;98(7):437–442. www.ncbi.nlm.nih.gov/pubmed/30252420 (дата обращения: 28.01.2021).

168. Ambrosy A.P., Gurwitz J.H., Tabada G.H. et al. Incident anaemia in older adults with heart failure: rate, aetiology, and association with outcomes. Eur Heart J Qual Care Clin Outcomes. 2019 Oct 1;5(4):361–369. doi: 10.1093/ehjqcco/qcz010. www.ncbi.nlm. nih.gov/pubmed/30847487 (дата обращения: 28.01.2021).

169. Min J.Y., Min K.B. The Folate-Vitamin B12 Interaction, Low Hemoglobin, and the Mortality Risk from Alzheimer’s Disease. J Alzheimers Dis. 2016 Mar 21;52(2):705-12. doi: 10.3233/JAD-151095. www.ncbi.nlm.nih.gov/pubmed/27003215 (дата обращения: 28.01.2021).