24 апреля, в пасхальное воскресенье, известие подхватили главные британские СМИ. Джон Баттерворт, физик ATLAS из лондонского Университетского колледжа, сделал взвешенное сообщение в новостной программе британского канала Channel 4. Он сказал: «Случилось то, что несколько человек не спали четыре ночи. Они со ставили кое-какие графики и порядком перевозбудились [и] передали их во внутренней записке по коллаборации. И это совершенно нормально. Все взволнованы, но, к сожалению, информация просочилась наружу. В данный момент это очень беспокойное место»[160]. На следующий день историю широко обсуждали в газетах.
В своем блоге на сайте газеты «Гардиан» Баттерворт высказался подробнее: «Нам сейчас довольно трудно сохранять холодный научный подход. А если мы сами не всегда способны оставаться спокойными, неудивительно, что все вокруг тоже переволновались. Поэтому у нас и предусмотрен строгий внутренний анализ, который проводят разные группы, и внешние рецензенты, и повторные эксперименты, и тому подобное»[161].
Вскоре появились противоположные слухи. Французский блог, посвященный физике высоких энергий 28 апреля заявил, что, изучив дополнительные данные, физики ATLAS пришли к выводу, что признаков бозона Хиггса нет. 4 мая штатный репортер New Scientist Дэвид Шайга опубликовал на сайте новость, что он якобы видел документ, попавший к нему из коллаборации CMS, где говорилось, что анализ их данных «ничего не дал»[162]. Благодаря таким утечкам до заинтересованных наблюдателей долетали отголоски происходящего в коллаборациях ATLAS и CMS, которые кидало назад и вперед.
8 мая коллаборация ATLAS опубликовала официальный отчет. Дальнейший анализ 132 обратных пикобарнов данных за 2010 и 2011 годы действительно ничего не дал; двухфотонный канал распределения массы не показал избытка событий. В своем блоге Баттерворт позднее объяснил, что нулевой результат не должен удивлять: даже Стандартная модель предсказывала, что еще не на что смотреть, но «более-менее скоро» чего-то можно ожидать. «Поэтому не теряйте интереса к двухфотонному спектру масс, – написал он, – но подождите открывать шампанское, пока данные не подтвердятся»[163].
Казалось, ждать уже недолго. В полночь 22 апреля БАК установил новый мировой рекорд мгновенной светимости 4,67 × 1032 см–2 с–1, или 467 обратных микробарнов (467 миллионных барна) в секунду. В тот вечер дежурным инженером была Лоретт Понс, которая бывала в ЦЕРНе еще ребенком и поступила в лабораторию в 1999 году для работы над докторской диссертацией. «Мне и не снилось, что однажды именно я буду нажимать кнопку пуска Большого адронного коллайдера», – сказала она[164].
Поскольку дело было в полночь, в центре управления находилось совсем немного очевидцев этого момента. Понс закричала, бросилась в пляс и замахала руками, как ребенок.
Такое резкое увеличение светимости произошло за счет инжекции все большего и большего количества протонных сгустков из ПСС в каждый летящий по коллайдеру пучок. 3 мая пиковая светимость увеличилась еще больше – до 880 обратных микробарнов в секунду, 768 сгустков на пучок. В конце мая была зарегистрирована пиковая светимость 1260 обратных микробарнов в секунду.
Чтобы было понятнее, поперечное сечение неупругих протон-протонных столкновений на энергии 7 ТэВ составляет около 60 миллибарнов, то есть 0,06 барна. Таким образом, мгновенная светимость 1260 обратных микробарнов в секунду означает 1260 × 106 × 0,06 = более 75 миллионов столкновений в секунду. Если взять сечение для получения бозона Хиггса на 7 ТэВ в размере 9 пикобарнов[165], то эта мгновенная светимость означает 1260 × 106 × 9 × 10–12 = 0,011 бозона Хиггса в секунду, или 1 бозон Хиггса в среднем каждые 90 секунд.
Шум, поднявшийся из-за утечки, вызвал интерес к процессу, который может привести к объявлению официального результата. Джеймс Гиллис, директор ЦЕРНа по связям с общественностью, объяснил изданию New Scientist, что любой результат сначала будет обсуждаться и согласовываться в самой коллаборации (ATLAS или CMS), которая его получила, прежде чем о нем сообщат генеральному директору ЦЕРНа. Затем результат передадут второй коллаборации, чтобы она его подтвердила или опровергла. Потом будут извещены руководители других лабораторий и представители стран, финансирующих работу ЦЕРНа. После этого в ЦЕРНе состоится семинар, на котором и будет оглашен результат. К тому времени о нем будут знать уже многие тысячи людей. Утечка представлялась не просто весьма возможной, а практически неизбежной.
Так где плотину прорвет в следующий раз?
К 17 июня БАК успел собрать 1 обратный фемтобарн данных по каждой из коллабораций – а ведь эту цель ставили на весь 2011 год. «Вряд ли наши цели были заниженными, – пояснил Хойер, выступая перед сотрудниками, что он делал раз в полгода. – Думаю, мы установили реальные, но не слишком оптимистичные цели. И за себя, прирожденного оптимиста, должен сказать, что машина работала лучше, чем мы ожидали»[166].
Однако Линдон Эванс не слишком удивился. «БАК работает гораздо лучше, чем ожидали все, кроме меня, – заявил он. – Я очень доволен»[167]. Эванс пришел в ЦЕРН в 1969 году и участвовал в проекте БАК с самого начала, еще с совещания в Лозанне в 1984 году. С 1993 года он возглавлял проект. Проделанный путь был весьма волнующим.
Когда обе коллаборации ATLAS и CMS получили такое количество данных, ожидания возросли, как никогда. Данных должно было хватить, чтобы свидетельствовать о бозоне Хиггса в диапазоне масс 135–475 ГэВ с уровнем достоверности 3 сигмы. Либо их должно было хватить, чтобы со 100-процентной уверенностью исключить его из диапазона 120–530 ГэВ. Если говорить о планах до конца 2012 года, казалось, что вопрос решится так или иначе.
«По-моему, ответ на шекспировский вопрос о бозоне Хиггса – быть или не быть – будет получен в конце следующего года», – сказал Хойер[168].
После этого всеобщее внимание обратилось к назначенной на 21 июля конференции по физике высоких энергий, которое проводило в Гренобле Европейское физическое общество.
На конференции ЕФО коллаборации ATLAS и CMS впервые получили возможность поделиться результатами анализа более чем 1 обратного фемтобарна данных. То, что коллаборации смогли представить их буквально за несколько недель после того, как собрали данные, свидетельствовало об упорном и ревностном труде сотен физиков, которые без устали – и почти без сна – работали над анализом.
Стало понятно, что бозон (или бозоны) Хиггса – если таковой существует – не будет «найден» как таковой. Вместо этого из исследований устранят диапазоны масс бозона, ограничивая поиск все более узкими диапазонами, пока наконец у бозона Хиггса не останется мест, где он мог бы прятаться.
Итак, коллаборация ATLAS могла с 95-процентной уверенностью исключить существование бозона Хиггса Стандартной модели с массой 155–190 ГэВ и 295–450 ГэВ. Сам по себе это уже был серьезный результат. Тот факт, что в таком широком диапазоне энергий ничего не нашлось, оставил лисе несколько гипотетических курятников; большинство из них относилось к физике вне Стандартной модели.
Но это еще не все. Данные эксперимента ATLAS также показали избыток событий над ожидаемым фоном между 120 и 145 ГэВ. Причины могли быть разные, например ошибки в анализе, фоновые флуктуации в событиях, которые не были должным образом спрогнозированы или рассчитаны, или системные неопределенности детектора. Либо это мог быть первый признак того, что нечто вроде бозона Хиггса Стандартной модели или, может быть, даже многих бозонов Хиггса прячется в этом диапазоне.
В избытке преобладали события, которые можно было отнести к двум разным каналам распада бозона Хиггса. Это был распад бозона на две W-частицы и затем на два заряженных лептона и два нейтрино (записывается в виде H → W+W— → l+ν l—ν)[169] и несколько более редкий канал, в котором бозон Хиггса распадается на две Z0-частицы и потом на четыре заряженных лептона (записывается в виде H → Z0Z0 → l+ l—l+ l—)[170]. Ожидалось, что первый канал будет преобладающим каналом распада бозона Хиггса Стандартной модели с достаточной массой, но, разумеется, нейтрино и антинейтрино, получаемые подобным образом, приходилось выводить логически, так как их невозможно обнаружить, а всем известно, как тяжело отличить истинные события с бозоном Хиггса от фоновых. Поэтому данные для этого канала позволяли только вывести диапазон масс бозона.
Второй канал гораздо чище. На самом деле этот канал называют «золотым», потому что в нем почти отсутствуют фоновые события и таким образом он обеспечивает потенциально очень точную оценку массы бозона Хиггса. Он, кроме того, встречается очень редко, примерно один на тысячу бозонов Хиггса распадается таким образом.
Наблюдаемый избыток событий в объединенных данных коллаборации ATLAS составил в целом 2,8 среднеквадратичного отклонения, или 2,8 сигмы выше фона. Это было не вполне 3 сигмы и далеко не 5 сигм, которые требовались, чтобы объявить об открытии. Тем не менее это весьма прозрачный намек. Что же нашел CMS?
Коллаборация CMS объявила, что можно с 95-процентной уверенностью исключить диапазоны 149–206 ГэВ, большую часть диапазона 200–300 ГэВ и диапазон 300–440 ГэВ. Объединенные данные CMS также показали любопытный избыток событий в районе 120–145 ГэВ, со статистической значимостью, которую оказалось трудно определить, но которая была чуть меньше, чем у коллаборации ATLAS.