Будущее мозга. Как мы изменимся в ближайшие несколько лет — страница 39 из 64

всегда носит в высшей степени символический характер. И выбор главного героя организаторами мероприятия выходит далеко за рамки простого спортивного, физического или механического действа. Это жест, который подчеркивает значимость того или иного события – будь то в политике, в истории спорта или в обществе, – сумевшего консолидировать вокруг себя чувства и мысли конкретной эпохи. Как известно, чемпионат мира по футболу, проводящийся каждые четыре года, является одним из самых важных спортивных и социальных мероприятий (по оценкам экспертов, он собирает вокруг себя миллиарды зрителей). Тот факт, что символом такого эпохального события стал результат работы неврологов, компьютерных инженеров и ученых, представляющих абсолютно разные научные дисциплины, ознаменовал собой трансцендентный исторический процесс. Конечно, это стало грандиозной новостью не только для нейробиологии, но и для нашей истории в целом: удар по мячу одного человека стал золотым голом для всего человечества.

* * *

Женщина, которая заботится обо мне, крайне воодушевлена и говорит, что поможет мне полностью выздороветь. Моя жизнь в основном проходит на диване, но мне разрешено переходить из одной комнаты в другую. Как-то раз я гуляла на воздухе, сидя в чем-то похожем на кресло-качалку, и собираюсь сделать это снова. Если погода позволит, то я смогу передвигаться на инвалидной коляске. В этой связи я лишь выражу надежду, что моя дорогая сестра, моя нежная, внимательная и неутомимая сиделка не заболеет сама от столь непосильного труда. Мне остается только со слезами на глазах воскликнуть, сколь многим я обязана ей и всей моей любимой семье в такой момент. И я молю Бога, чтобы с каждым новым днем он посылал вам всем больше и больше своих благословений.

Джейн Остин, письмо к Френсис Тилсон, 29 мая 1817

Что такое оптогенетика?

Так называемая оптогенетика представляет собой метод, позволяющий управлять деятельностью мозга, иными словами, активировать или ингибировать определенный набор нейронов. Эта технология помогает ученым наблюдать за тем, как порождается определенная модель действий, мыслей или эмоций, а также исследовать причинно-следственные связи между деятельностью мозга и наблюдаемым поведением. Это открывает множество возможностей для изучения и лечения неврологических и психиатрических заболеваний в будущем, а также поднимает немало серьезных вопросов.

Этот метод основывается на внедрении в нейроны молекул, реагирующих на свет. Это достигается путем встраивания в геном клетки чужеродных генов (например, полученных из водорослей), которые кодируют светочувствительные белки (опсины). Таким образом, нейроны начинают менять свою активность в зависимости от уровня освещенности. Другими словами, они преобразуют свет в электрические импульсы, интерпретируя которые, мозг начинает действовать соответствующим образом. Управляя светом соответствующей частоты, можно активировать или отключить определенные группы нейронов, чтобы иметь возможность изучить, какое влияние они оказывают на познание, эмоции и поведение. Преимущество данного метода состоит в том, что его можно применять для изучения сразу целых групп определенных нейронов. Это открывает безграничные возможности для исследований и разработки методов лечения, которые только могут быть созданы на основе данного типа технологий. Хотя большинство экспериментов с оптогенетикой проводились на животных, полученные результаты имели колоссальное значение для понимания поведенческих моделей человека.

Какую пользу можно извлечь из технологии оптогенетики? Она уже использовалась в различных областях исследований с потенциальным клиническим применением. К примеру, ее применяли для контроля над классом нейронов, называемых гипокретиновыми клетками, отвечающими за расстройства сна и развитие нарколепсии. Она также помогла лучше понять болезнь Паркинсона. Благодаря тестированию технологии на животных удалось более точно воспроизвести мозговые цепи, пораженные данным заболеванием, и понять механизмы действия терапевтического вмешательства, связанного с глубокой стимуляцией мозга. Кроме того, применение оптогенетики помогло определить, как нейроны, продуцирующие дофамин, вызывают чувство удовольствия и запускают в мозге процесс обработки вознаграждения. Все это – результаты, которые имеют непосредственное отношение к изучению таких патологий, как депрессия и злоупотребление психоактивными веществами.

Изучение агрессивного поведения является еще одной областью, в которой данная технология позволяет добиться впечатляющих результатов. Агрессия представляет собой естественный инстинкт у живых существ, в том числе и у людей. Она помогает нам адаптироваться к окружающей среде и защитить себя от потенциальной опасности и вреда. Однако агрессия может стать серьезной проблемой в случае ее перехода в плоскость проявления насилия. Нейробиологи из разных уголков мира изучают области мозга и нейронные связи, которые контролируют агрессивные импульсы, и в последнее время с этой целью начали все чаще внедрять методы оптогенетики.

Именно в этой области исследований Дэвид Андерсон и его сотрудники из Калифорнийского технологического института изучают взаимосвязь между отделами мозга, отвечающими за агрессию, и теми, что контролируют сексуальное поведение. В результате экспериментов с участием животных ученым удалось выяснить, что, несмотря на кажущуюся взаимоисключаемость этих типов поведения, оба они связаны между собой и усиливают друг друга. Именно в период спаривания в животном мире агрессивное поведение находится на максимальном уровне. Это открытие послужило толчком к тому, чтобы как можно глубже изучить задействованные механизмы мозга, сосредоточенные в области, называемой гипоталамусом. Было отмечено, что один набор нейронов гипоталамуса активировался, когда животные дрались между собой, а другой – когда они спаривались с особью другого пола. И что самое удивительное, порядка 25 процентов и той, и другой группы нейронов были активны во время проявления и того, и другого типа поведения. Впоследствии для лучшего понимания специфической роли этих нейронов исследователи использовали технику оптогенетики, чтобы получить возможность включать и выключать данные нейроны с временным интервалом в миллисекунды, а также записать их влияние на поведение животных. В ходе первого эксперимента они помещали грызуна в клетку рядом с неодушевленным предметом (резиновой перчаткой) и стимулировали нейроны агрессии. Тем самым они искусственно убеждали его нападать на объект. Затем ученые провели еще один эксперимент, чтобы проверить, участвуют ли те же самые нейроны в естественном агрессивном поведении. С этой целью в клетку, где уже обитало одно животное, они поместили второго грызуна. В таких условиях животное почувствовало вторжение на свою территорию и, естественно, атаковало вторгшегося грызуна. Исследователи также отметили, что в тот момент, когда активность нейронов агрессии купировалась при помощи оптогенетики, борьба автоматически прекращалась. Это доказало, что именно эти нейроны непосредственно отвечают за проявление агрессивного поведения. И это еще не все. Манипулируя активностью нейронов, ученые обнаружили нечто очень важное. Для активирования агрессивного поведения требовалась высокоинтенсивная световая стимуляция, в то время как стимуляция меньшей интенсивности запускала процесс спаривания. Световая стимуляция оказалась напрямую связана с электрической активностью. Это означало, что в состоянии высокой активности нейроны вызывали агрессию, в то время как в состоянии низкой активности они запускали механизмы сексуального поведения. Испытывая на себе низкий уровень стимуляции, грызун пытался вступить в сексуальный контакт. Всего лишь модулируя интенсивность световой стимуляции в этой области мозга, ученые могли вызывать агрессивное поведение, смесь агрессии и сексуального поведения или просто сексуальное поведение. (Результаты данных исследований были получены в контролируемых лабораторных условиях и, следовательно, должны рассматриваться исключительно в этом контексте. Это лишь первые шаги, сделанные с использованием новейших технических разработок, поэтому любая иная трактовка результатов может оказаться поспешной и опрометчивой).

Оптогенетика также используется для исследований механизмов формирования воспоминаний. Как мы уже упоминали в предыдущих главах, память не работает по принципу видеокамеры, точно записывая переживаемые события. Она представляет собой весьма пластичную и изменчивую когнитивную функцию, всегда готовую воспринимать и обрабатывать новые данные. Понимание того, как работают память и связанные с ней отделы мозга, является ключевым. С одной стороны, это позволяет нам четко определять проявление искажения памяти и иллюзий, представляющих собой симптомы различных когнитивных нарушений и таких заболеваний, как болезнь Альцгеймера, чтобы разрабатывать новые методы и стратегии лечения. С другой стороны, знания о функционировании памяти и формировании ложных воспоминаний имеют потенциальное применение для правовой системы, например, в отношении использования в качестве доказательств воспоминаний свидетелей.

В этой области исследований эксперимент с использованием оптогенетики, проведенный нейробиологом Сусуму Тонегава из Массачусетского технологического института, показал, как ложные воспоминания могут формироваться у грызунов, что лишний раз доказало пластичность функции памяти. В ходе эксперимента исследователи помещали грызуна в клетку, где животное чувствовало себя защищенным от неприятных стимулов, и, используя генетическую технику, помечали клетки мозга в области гиппокампа, где хранились воспоминания о пребывании в этом безопасном месте. На следующий день это же животное помещали в совершенно другую клетку, где оно получало отрицательные стимулы, и параллельно оптогенетическим методом при помощи света стимулировали те клетки мозга, которые активно работали, когда животное находилось в других условиях, то есть клетки, обладающие физическим представлением о