Рис. 57
Однако, невзирая на то, что за прошедшие три десятилетия были обнаружены и другие инварианты, пока не удается составить полную классификацию узлов. Вопрос о том, какой именно узел можно превратить в другой узел, если вертеть его и крутить, не прибегая к помощи ножниц, остается без ответа. Пока что самый удачный инвариант – это творение русско-французского математика Максима Концевича, который получил за него Филдсовскую медаль в 1998 году и Премию Крафорда в 2008 году. Кстати, в 1998 году Джим Хосте из Колледжа Питцера в Клермонте в штате Калифорния и Джеффри Уикс из Кантона в штате Нью-Йорк составили таблицу всех узлов до шестнадцати пересечений включительно. Точно такую же таблицу независимо от них составил Морвен Тистлетвейт из Университета штата Теннесси в Ноксвилле. В каждой из этих таблиц содержится ровно 1 701 936 разных узлов!
Но главная неожиданность таилась не столько в прогрессе теории узлов как таковой, а в том, какой мощный и внезапный толчок она дала самым разным не связанным с ней наукам[149].
Хитросплетения жизни
Стимулом для создания теории узлов была ошибочная модель атома, однако кончина этой модели не обескуражила математиков. Напротив, они с превеликим энтузиазмом пустились в далекий и опасный путь и стали разбираться в узлах как таковых. Легко представить себе, в какой восторг они пришли, когда теория узлов вдруг оказалась ключом к пониманию фундаментальных процессов, в которых участвуют молекулы жизни. Неужели вам мало такого замечательного примера «пассивной» роли чистой математики в объяснении природных явлений?
Дезоксирибонуклеиновая кислота, она же ДНК, – это генетический материал всех клеток на свете. Она состоит из двух очень длинных цепочек, которые миллионы раз перекручены, так что получается двойная спираль. По всей длине этих цепочек, которые можно представить себе как боковины лестницы, чередуются молекулы сахара и фосфата. Ступеньки этой лестницы состоят из пар оснований, соединенных водородными связями по определенным правилам (аденин создает связи только с тимином, а цитозин – только с гуанином; рис. 58).
Когда клетка делится, первым делом начинается самовоспроизведение – репликация ДНК, чтобы каждой из дочерних клеток досталось по копии. Подобным же образом в процессе транскрипции, при которой генетическая информация из ДНК копируется в РНК, участок двойной спирали ДНК раскручивается, и образцом для копирования служит только одна из двух цепочек. После завершения синтеза РНК цепочки ДНК снова скручиваются в спираль. Однако и репликация, и транскрипция – дело непростое, поскольку ДНК так туго скручена и перепутана (информацию нужно хранить в компактном виде), что без особых технологий распаковки процессы, лежащие в основе самой жизни, не могли бы идти гладко. Кроме того, чтобы процесс репликации дошел до конца, получившиеся молекулы ДНК должны быть без узлов, а родительская ДНК в конце концов должна вернуться к первоначальной конфигурации.
Рис. 58
Рис. 59
Всем этим развязыванием и распутыванием занимаются особые вещества – ферменты[150]. Ферменты умеют пропускать цепочки ДНК друг через друга – для этого они на время разрывают их и связывают освободившиеся концы по-другому. Знакомо, правда? Именно такие хирургические операции предложил Конвей для распутывания математических узлов (как изображено на рис. 56). Иначе говоря, с топологической точки зрения ДНК – сложный узел, и для репликации и транскрипции нужно, чтобы ферменты его развязали. С помощью теории узлов можно понять, насколько трудно распутать ДНК, и таким образом можно изучать свойства ферментов, которые отвечают за распутывание. Мало того, при помощи средств экспериментальной визуализации – электронной микроскопии и электрофореза в полиакриламидном геле – ученые могут наблюдать и измерять изменения в образовании узлов и сцеплений ДНК, вызванные ферментами (на рис. 59 показана электронная микрофотография узла ДНК). Помимо всего прочего, изменение числа пересечений в узле ДНК дает биологам возможность оценить скорость реакций с участием ферментов: на сколько пересечений в минуту может повлиять фермент в той или иной концентрации.
Однако теория узлов нашла неожиданное применение не только в молекулярной биологии. Об узлах речь идет и в теории струн – современной попытке сформулировать универсальную теорию, объясняющую все взаимодействия в природе.
Вселенная по струнке?
Гравитация – это сила, которая действует на самых больших масштабах. Она удерживает звезды в галактиках, она влияет на расширение Вселенной. Замечательная теория, описывающая гравитацию, – это общая теория относительности Эйнштейна. А в глубинах атомных ядер владычествуют совсем другие силы и совсем другая теория. Сильное ядерное взаимодействие связывает частицы под названием кварки, и из них создаются знакомые многим протоны и нейтроны – главные компоненты видимого вещества. Поведение частиц и сил в субатомном мире регулируется законами квантовой механики. Едины ли законы для кварков и галактик? Физики считают, что законы должны быть едины, хотя пока еще не понятно, почему. Уже несколько десятков лет физики пытаются построить «Теорию Всего» – всеобъемлющее описание законов природы. В частности, они хотели бы ликвидировать разрыв между большим и малым при помощи квантовой теории гравитации – примирить общую теорию относительности с квантовой механикой. На данный момент лучшим кандидатом на звание Теории Всего считается теория струн[151]. Первоначально эта теория была разработана для ядерного взаимодействия как такового, но в 1974 году физики Джон Шварц и Джоэль Шерк привлекли к ней внимание широкой физической общественности уже в ином качестве. Основная идея теории струн довольно проста. Элементарные субатомные частицы, например электроны и кварки – вовсе не точечные сущности, не имеющие структуры. Напротив, элементарные частицы представляют разные виды вибраций одной и той же фундаментальной струны. Согласно этой теории, космос наполнен тоненькими и гибкими, будто резиновыми, петлями. Скрипичную струну можно ущипнуть и получить разные гармонии, точно так же разные вибрации этих переплетенных струн соответствуют разным частицам вещества. Иначе говоря, мир подобен симфонии.
Поскольку струны – это замкнутые петли, движущиеся в пространстве, то с течением времени они заметают области (так называемые мировые листы) цилиндрической формы (рис. 60). Если струна испускает другие струны, цилиндр разветвляется, образуется что-то вроде рогульки. Если взаимодействует сразу много струн, получается сложная система переплетенных изогнутых цилиндров – вроде сплавленных друг с другом пышек.
Рис. 60
Изучая сложные топологические структуры подобного рода, специалисты по теории струн Хироси Оогури и Кумран Вафа обнаружили неожиданную связь между количеством таких пышек, сложными геометрическими свойствами узлов и многочленом Джонса (Ooguri and Vafa 2000). Но еще раньше Эдвард Виттен, один из главных игроков на поле теории струн, выявил соотношение между многочленом Джонса и самой основой теории струн – так называемой квантовой теорией поля (Witten 1989). Затем модель Виттена переосмыслил с точки зрения чистой математики Майкл Атья[152]. Так что теория струн и теория узлов живут в идеальном симбиозе. Теория струн, с одной стороны, получила много полезных результатов при помощи теории узлов, а с другой – и сама натолкнула на интересные открытия в этой области.
В гораздо более широком масштабе теория струн ищет объяснения самой сущности вещества – причем движется примерно в том же направлении, что и Томсон, когда придумывал модель атома. Томсон (ошибочно) полагал, что узлы могут дать ответ на вопрос о строении атомов. И вот по интересной прихоти судьбы специалисты по теории струн обнаружили, что узлы и в самом деле позволяют сделать некоторые выводы.
История теории струн – это великолепный пример нежданного могущества математики. Как я уже упоминал, даже «активная» сторона эффективности математики сама по себе, когда ученые генерируют математические теории, необходимые для описания наблюдаемых физических феноменов, иногда – если речь заходит о точности – приносит невероятные сюрпризы. Рассмотрим вкратце одну область физики, где важную роль играют обе стороны математики, и «активная», и «пассивная», – область, примечательную именно тем, какой поразительной точности удалось там добиться.
С аптечной точностью
Галилей и другие итальянские ученые-экспериментаторы вывели законы падения тел, а Ньютон взял эти законы в сочетании с законами движения планет, которые открыл Кеплер, и на основе объединенных данных сформулировал математический закон всемирного тяготения. При этом Ньютону пришлось разработать совершенно новую область математики – интегральное и дифференциальное исчисление, – которое позволило в полной мере воплотить все качества законов движения и тяготения. С учетом погрешности современных Ньютону экспериментов и наблюдений, он сумел проверить собственный закон всемирного тяготения лишь с точностью хуже, чем четыре процента. А впоследствии оказалось, что по точности этот закон превосходит все мыслимые ожидания. К концу 50-х годов ХХ века погрешность экспериментов составляла менее одной десятитысячной доли процента.
Но и это еще не все. Целый ряд недавних спекулятивных теорий, целью которых было объяснить, как так вышло, что наша Вселенная расширяется с ускорением, предположили, что законы гравитации на очень маленьких расстояниях могут вести себя необычно. Вспомним, что по закону всемирного тяготения Ньютона притяжение уменьшается обратно пропорционально квадрату расстояния. То есть если удвоить расстояние между двумя массами, то сила тяготения, действующая на каждую массу, ослабеет в четыре раза. Новые сценарии предсказывали отклонения от этого поведения на расстояниях меньше миллиметра. Эрик Адельбергер, Дэниел Капнер и их коллеги из Университета штата Вашингтон в Сиэтле провели серию остроумных экспериментов, чтобы проверить предсказанные такими сценариями отклонения в зависимости от расстояния (Kapner et al. 2007). Самые свежие результаты, обнародованные в январе 2007 года,