Человек 2.0. Перезагрузка. Реальные истории о невероятных возможностях науки и человеческого организма — страница 26 из 82

Но откуда стволовая клетка знает, чем ей заниматься? Что определяет, чем она станет — частью кишечника Кремешка или компонентом новой мышцы? И как она превращается в часть внутреннего органа? И если уж на то пошло, как стволовые клетки создают нового человека? И насколько далеко мы можем продвинуться по пути, который открывают перед нами такие исследования?

На эти вопросы сейчас усиленно пытаются ответить многие из работающих в сфере биоинженерии — области, которая сегодня развивается очень стремительно. Среди таких исследователей — Гордана Вуньяк-Новакович, специалист сербского происхождения, действующая сейчас на переднем крае изучения процессов, с помощью которых организм выстраивает, лечит и регенерирует себя.

В 80-е годы, примерно в то время, когда Бадилак проводил свои первые опыты на Кремешке, Вуньяк-Новакович, получив Фулбрайтовскую стипендию, приехала из своей родной Сербии в МТИ, чтобы поработать в лаборатории еще одного пионера регенеративной медицины, человека, чье имя позже станет олицетворением области, которую назовут биоинженерией тканей. Речь идет о Роберте Лэнджере.

Эксперименты, которые Вуньяк-Новакович проводила вместе с Лэнджером и сотрудниками его лаборатории, позволили многое понять о естественных лечебных реакциях организма и о некоторых внутренних сигналах, которые управляют этими реакциями. Начав разбираться в этих сигналах, Вуньяк-Новакович и ее коллеги (в том числе и Бадилак) помогают науке ближе подобраться к той цели, которой очень долго не удается достигнуть человечеству: к обретению контроля над регенерацией тканей.

Ученые выясняют не только то, каким образом сзывать стволовые клетки в зону повреждения (как это делал Бадилак), но и как изолировать их и экспериментировать с ними за пределами организма. Специалисты постепенно учатся направлять деятельность этих клеток, обращая их в нужный тип ткани: иными словами, они пытаются контролировать трудноуловимых призраков, которые порождают этих «распухших чудовищ», злокачественные опухоли, состоящие из мешанины волос, зубов и кожи. И в результате эти исследователи производят весьма примечательные продукты — не только мышцы, но и кожу, хрящи, кости.

* * *

Когда я прихожу к Вуньяк-Новакович в ее офис на двенадцатом этаже Клиники Вандербильта Медицинского центра Колумбийского университета (на манхэттенской 168-й улице), она вводит меня в зал-рефрижератор, полный разнообразных пробирок. Затем она достает из шкафчика кусок сердца, выращенный в лаборатории. Зрелище жутковатое: биологическая ткань словно бы бьется сама по себе.

«Стволовые клетки получают указания, как им действовать, руководствуясь составом питательных веществ, которые они получают, интенсивностью электрических импульсов, которые они на себе испытывают, уровнем кислорода, который в них поступает, и движениями, которые они чувствуют, — объясняет Вуньяк-Новакович. — Все эти факторы, в сочетании с физическими параметрами — измерениями — их окружения, показывают стволовым клеткам, в какой части тела они находятся. Нам нужно создать искусственную среду, которая всё это имитирует достаточно адекватно, чтобы в точности “инструктировать” клетки, что им делать».

Ветеринарное прошлое Бадилака отлично подготовило его к тому, чтобы он стал хирургом-экспериментатором, работающим в быстро развивающейся области биоинженерии тканей. В свою очередь, академическая специальность Вуньяк-Новакович очень помогла ей занять ведущее место в изысканиях на еще одном передовом рубеже науки: в сфере создания этих искусственных сред и отыскания способов контролировать их.

Когда в начале 80-х Вуньяк-Новакович работала в Белградском университете над своей диссертацией по химической инженерии, ей и в голову не приходило, что в дальнейшем она может заняться выращиванием частей тела. Тогда ей хотелось понять силы и движения, возникающие при взаимодействии в жидкости газовых пузырьков и крошечных твердых частиц. В ходе этих исследований требовалось применять математическое моделирование и проводить эксперименты в автоклавах. Было вполне очевидно, что результаты этих изысканий можно применить в отраслях, где важную роль играют процессы брожения: например, в пищевой промышленности, а также в производстве пенициллина и других антибиотиков. Для этих опытов исследовательнице пришлось конструировать реакторы-автоклавы, где природные химические процессы можно было бы аккуратно воспроизводить и тщательно контролировать.

Молодую сотрудницу Белградского университета вскоре буквально зачаровали химические взаимодействия, идущие между молекулами в живых организмах. Этот интерес пробудился в ней как нельзя кстати. В 1986 г., во время своей работы в МТИ по фулбрайтовской стипендии, она привлекла внимание Лэнджера. Тот пытался разработать метод эффективной детоксикации крови больных и искал кого-нибудь, кто сумеет создать новые устройства для избирательного отделения лекарственных веществ от крови.

После того как Вуньяк-Новакович вернулась в Белград, она каждые два года снова прилетала в Бостон, а в промежутках постоянно поддерживала контакт с Лэнджером и его коллегами. В 1991 г., во время одного из ее визитов, межэтническая напряженность на ее родине переросла в гражданскую войну. «Мне стало ясно, что лучше уехать из Югославии», — говорит Вуньяк-Новакович. В конце концов ситуация на Балканах настолько обострилась, что в 1993 г. коллеги по МТИ, обеспокоенные судьбой исследовательницы, узнав, что срок действия ее визы вот-вот истечет, сумели добиться предоставления ей постоянной должности, которая позволила Вуньяк-Новакович остаться в США вместе с мужем и маленьким сыном.

Примерно в то же время Лэнджер объявил, что получил грант на нечто под названием «биоинженерия тканей», и осведомился, не желает ли она подключиться к этому проекту.

Лэнджер стоял на пороге создания одной из важнейших лабораторных методик в этой сфере. Вклад Бадилака в эти работы во многом сводился к исследованию сигнальных агентов, а одно из главных достижений Лэнджера в данной области состояло в том, что он сумел продемонстрировать: форма, архитектура и характер разложения материалов, встраиваемых в зону повреждения, также могут играть ключевую роль в процессах регенерации. Он сконструировал трехмерные подложки, своего рода каркас, который можно было засеять клетками-регенераторами, а затем поместить в тело человека без всякого вреда для него. Подложки направляли развитие появляющейся ткани, а синтетические материалы такого каркаса при этом постепенно разлагались в ходе биохимических процессов.

Когда в 1993 г. Вуньяк-Новакович начала полноценную работу в МТИ, ее первой задачей стало создание хрящей — гибкой соединительной ткани, из которой сделан нос и уши (кроме того, она заполняет пустоты во многих суставных сочленениях). Кость жестче и не столь гибка. Мышцы мягче и сильнее растягиваются. В сравнении с этими тканями хрящи казались более доступным объектом для исследования процессов регенерации. Их гелеобразная ткань состоит из клеток всего одного типа. К тому же хрящевая ткань гораздо проще устроена с точки зрения структуры и лишена кровеносных сосудов, тогда как для выживания костей и мышц такие сосуды необходимы. Совместно с Лизой Фрид, еще одной молодой исследовательницей, Вуньяк-Новакович принялась искать способ искусственно вырастить эту «простую» ткань.

В то время специалисты по биоинженерии тканей, экспериментировавшие с выращиванием стволовых клеток вне тела, полагали, что основной метод такой культивации сводится к тому, чтобы снабжать эти клетки определенной смесью белков, минеральных солей и других питательных веществ по мере того, как они растут и созревают. Исследователи осознали: малейшее изменение состава этого питательного супа, который они вводят в подложку, оказывает очень существенное воздействие на клеточную культуру. Скажем, если чуть-чуть увеличить содержание кальция в смеси, это станет для стволовых клеток сигналом: превращайтесь в кость.

Однако Вуньяк-Новакович предполагала, что здесь действуют и другие факторы. Тогда она читала много работ по механобиологии [науке, изучающей биологическую реакцию клеток на изменение их «механического» окружения], и ее поразило, что многие физиологические системы (генетические, молекулярные, электрические, механические) взаимосвязаны самым неожиданным образом. Так, она отметила, что у пациентов, долгое время находящихся без движения на больничной койке, часто происходит ослабление костей и хрящей. Казалось, физическое движение необходимо для того, чтобы поддерживать эти ткани в нормальном состоянии. Исследовательница задумалась: может быть, развивающиеся клетки тоже чувствительны к движению? Но как это механическое явление, связанное с силами перемещения объектов (или отсутствием таких сил), влияет, скажем, на костную ткань на молекулярном уровне? Чтобы проверить гипотезу, Вуньяк-Новакович вместе с Фрид и несколькими студентами начали медленно вращать сосуды, где на подложках из биоматериалов росли колонии клеток. Вскоре они получили весьма вдохновляющие результаты. Движение и в самом деле, казалось, способствует росту этих клеток, причем довольно неожиданными путями.

«Мы обнаружили, что, если физический фактор [т. е. фактор движения] действует по отдельности, это помогает клеткам расти, и если действует фактор роста — тоже, — говорит Вуньяк-Новакович. — Но если правильно использовать их одновременно, возникает своего рода синергия: иными словами, два плюс два уже равняется не четырем, а девяти. При правильно подобранном взаимовлиянии этих двух факторов можно добиться колоссальных улучшений».

«Улучшения в структурной целостности намного превзошли наши ожидания», — добавляет она.

Но лишь через несколько лет Вуньяк-Новакович и ее коллеги сумеют полностью разобраться в динамике этих взаимодействий. Они обнаружат это явление в необычной среде — в космосе.

В 1996 г. ученые НАСА решили провести первые космические эксперименты с биоинженерией тканей — на борту Международной космической станции. Очевидными кандидатами