бластоцисту (раннюю стадию развития эмбриона) для трансплантации в матку женщины. Всего ученый использовал двадцать две оплодотворенные яйцеклетки от нескольких супружеских пар, и оказалось, что только в шестнадцати из них произошло редактирование — либо наполовину, либо полностью. Одиннадцать из этих шестнадцати эмбрионов были использованы для имплантаций. Сегодня не рекомендуется имплантировать женщине более двух бластоцист, так как техника экстракорпорального оплодотворения развита достаточно хорошо, и в семидесяти процентах случаев обе бластоцисты нормально развиваются до самых родов, так что рождается двойня.
Поскольку было имплантировано одиннадцать эмбрионов, и не более двух — одной женщине, то, очевидно, трансплантация была проведена пяти или шести женщинам. Однако, судя по всему, развилась только одна беременность, и родились двойняшки (не однояйцевые близнецы) — никакой информации о других беременностях не появлялось.
Так родились Нана и Лулу. У одной из них, как выяснилось, была внесена мутация только в один аллель, то есть получилась гетерозигота по гену CCR5. Это значит, что один аллель оказался измененным и несет природную мутацию дельта-32. А второй аллель остался исходным, без полиморфного варианта гена. Другая девочка имела изменения в обоих аллелях гена CCR5, то есть они несли мутацию дельта-32. Считается, что такие люди устойчивы к вирусу иммунодефицита человека.
К сожалению, с тех пор как Хэ Цзянькуй выступил со своим докладом на конференции в Гонконге в ноябре 2018 года, никакой новой информации об этом уникальном эксперименте не появлялось. Каких-либо определенных научных публикаций в рецензируемых журналах до сих пор нет; ни один из них не решился напечатать материалы, отправленные китайским ученым. И та история, о которой я здесь рассказываю, стала известна скорее из публикаций в СМИ и научно-популярных изданиях, чем из какой-то научной аналитической статьи.
В природе такого не бывает
О явлении, названном мозаицизм, мы уже говорили, когда обсуждали эксперименты на обезьянах и работы Шухрата Миталипова по редактированию эмбриона человека без имплантации. Мозаицизм возникает, когда у одного и того же организма разные клетки могут нести немного отличающиеся гены. Читатель уже, наверное, понял, что это явление могло развиться при геномном редактировании на уровне эмбриона, которое провел Хэ Цзянькуй. Ученый ввел необходимый генный редактор в зиготу (уже оплодотворенную яйцеклетку с диплоидным геномом), однако дальше эта клетка делится, образуя две, четыре, восемь, шестнадцать клеток и т. д., — и на каком этапе генный редактор сработает, неизвестно. Как вы помните, Шухрат Миталипов утверждал, что вводить генный редактор надо не тогда, когда гаметы уже слились, а на более раннем этапе, еще до оплодотворения яйцеклетки сперматозоидом. Хэ Цзянькуй пошел более стандартным путем, и генный редактор действительно сработал гораздо позже — уже на этапе нескольких клеток, причем сработал, скорее всего, далеко не во всех из них. В каких-то клетках ген был изменен, а в других остался в своем нормальном состоянии.
В естественной популяции такого не бывает. Существуют природные варианты гена CCR5 — те, которые наследуются. Например, от мамы будущий ребенок получает ген CCR5-дельта-32, а от папы более широко распространенный вариант гена без этого изменения, и все клетки этого человека с момента его рождения и до самой смерти будут гетерозиготны по гену CCR5. А вот с ситуацией, когда возникает мозаицизм, то есть часть клеток в одном и том же организме гомозиготна по гену CCR5, а другая гетерозиготна, человечество никогда раньше не сталкивалось. Как будет развиваться такой организм? Скорее всего, нормально, ведь и с тем и с другим геном люди живут и чувствуют себя прекрасно. Но если мозаиками окажутся кроветворные стволовые клетки, то когда дело дойдет до иммунного ответа, предсказать его правильность пока не представляется возможным.
Проблема в том, что на самом деле ген CCR5 играет важную роль для клеток иммунной системы. В частности, некоторые из них, а именно Т-лимфоциты, как раз из-за наличия гена CCR5 становятся мишенями ВИЧ. Очень показательна история Тимоти Рэя Брауна, американца, у которого в 1995 году во время учебы в Берлине диагностировали ВИЧ. На фоне иммунодефицита у Тимоти развился острый миелоидный лейкоз — разновидность лейкемии (рака крови). Самым эффективным способом лечения лейкемии является химическое устранение всех клеток крови, включая стволовые, поскольку они-то как раз и становятся раковыми. А взамен нужно было трансплантировать пациенту кроветворные клетки костного мозга от подходящего донора, и если они приживутся, пациент будет жить долго и счастливо.
Трансплантация состоялась в 2007 году. Несколько лет после этого события имя пациента скрывалось из соображений конфиденциальности. Из шестидесяти доноров был выбран человек, имевший мутацию гена CCR5 в обоих аллелях, доставшихся ему и от папы, и от мамы. Люди с этой мутацией встречаются достаточно редко — примерно в одном проценте случаев. Именно такие клетки костного мозга получил ВИЧ-инфицированный пациент для лечения своей лейкемии. То, что произошло дальше, назвали берлинским чудом: пациент оказался полностью излеченным от ВИЧ, потому что тот вид вируса, которым он был инфицирован, проникал в здоровые клетки именно через рецептор CCR5. Мутация дельта-32 приводит к тому, что вирус не связывается с рецептором на Т-лимфоцитах и не проникает в них, инактивируя в дальнейшем всю иммунную систему. Этот человек вылечился и прожил еще тринадцать лет. К сожалению, в 2020 году Тимоти Браун умер в результате рецидива лейкемии. Ему было пятьдесят четыре года.
Известен всего один случай успешного повторения этой лечебной процедуры у другого человека, известного как лондонский пациент. Случай аналогичный: у больного нашли лимфому, и при этом он был ВИЧ-инфицированным. Он тоже получил костный мозг от донора, который, по счастливому совпадению, имел ген CCR5 с мутацией дельта-32 в обоих аллелях. Лондонский пациент выздоровел и в 2019 году сообщил свое имя — Адам Кастильехо.
В этих двух случаях использовалась весьма дорогостоящая и сопряженная с повышенным риском медицинская процедура, ориентированная в первую очередь на онкологических больных. Но сегодня для целого ряда компаний, работающих по редактированию генома, мишенью является именно ген CCR5. Его редактируют, но не на уровне эмбриона, чтобы последствия этого редактирования не передавались по наследству, а берут у пациента кроветворные стволовые клетки костного мозга, вне организма редактируют их, а потом помещают обратно. Таким образом, зародышевый путь не затрагивается, наследования не происходит, но зато часть стволовых клеток крови получает мутацию дельта-32, и они становятся устойчивыми к инфицированию вирусом иммунодефицита человека.
Китайский эксперимент: за и против
Сегодня человечество находится еще в самом начале клинических исследований в области методов лечения ВИЧ с помощью технологии геномного редактирования. Задача, которую поставил себе Хэ Цзянькуй, была более сложной, чем у других исследователей, потому что в китайских популяциях мутация дельта-32 гена CCR5 не встречается. Ученый надеялся, что та мутация, которую он внес Нане и Лулу, в случае образования как гомозиготы, так и гетерозиготы повлияет не только на них, но — за многие годы — и на всю китайскую популяцию в плане защиты от ВИЧ. В самом деле, если клетки с подобной мутацией попадут в женскую репродуктивную систему и сформируют яичник, то либо половина яйцеклеток (у той девочки, у которой гетерозигота), либо все яйцеклетки (у второй девочки, у которой гомозигота) будут нести мутацию дельта-32 и передадут ее потомкам.
В этом Хэ Цзянькуй видел главный положительный момент, когда обосновывал свой эксперимент по редактированию эмбриона. Но тут надо оговориться, что есть несколько подтипов ВИЧ, использующих для проникновения в организм разные рецепторы, и CCR5, который выбрал в качестве мишени китайский ученый, — только один из них. Поэтому если мы изменили ген CCR5, то это не означает, что человек будет полностью защищен от инфицирования вирусом иммунодефицита человека.
Насколько важно наличие или отсутствие участка гена CCR5, лежащего в области дельта-32? Люди, естественным образом имеющие гомозиготную мутацию по этому рецептору, живут без него и каких-то особых проблем из-за этого не замечают — даже на Фарерских островах, где частота мутации дельта-32 максимальна и достигает трех процентов общей численности населения. По-видимому, ген CCR5 — не тот ген, вариации которого представляют опасность для здоровья в настоящее время.
Эксперимент китайского исследователя неожиданно возродил интерес и к полиморфизму гена CCR5. Так, в июне 2019 года в журнале Nature Medicine (это один из наиболее авторитетных научных журналов) была опубликована статья, что от варианта гена дельта-32 бывают и негативные последствия. Проанализировав результаты генотипирования и данные о смерти четырехсот тысяч британцев, исследователи из Университета Беркли пришли к выводу, что мутация CCR5-дельта-32 в гомозиготном состоянии увеличивает для ее обладателей риск смерти от любых причин! И это в довесок к тому, что она вроде бы приводит и к повышенной восприимчивости к вирусу гриппа. Шокирующая информация была опровергнута через полгода, когда три независимых анализа той же самой базы данных о смертности и генотипе дельта-32 опровергли данные статьи, поскольку обнаружили техническую ошибку в расчетах. В октябре 2019 года исходная статья о риске смерти была отозвана авторами из журнала. Ситуация как в старом анекдоте: ложки-то мы нашли, но осадочек остался... Тем не менее многие функции этого гена остаются неизвестными. Например, мы не знаем, для чего ген CCR5 экспрессируется в мозге, в опухолях и т. д. Насущная потребность в изучении таких вопросов отсутствует, а значит, и средства на их решение не выделяются.