Как нигде, тонка в области гравитации грань между экспериментатором и теоретиком. Каждый опыт над; разрабатывать с такой максимальной тонкостью, что при этом случается делать открытия в теории.
Если уже применяемый геологами гравиметр достаточно совершенен, чтобы на его показания не влиял притяжение тела гравиметриста, то техника гравитационного эксперимента требует стократной защиты от любых посторонних помех. Вот одна поучительна история.
Группа физиков проверяла, как скажется во время солнечного затмения то обстоятельство, что в поле тяготения между Солнцем и Землею оказалась Луна. Бы, сделан очень тонкий и чувствительный прибор, который показал: притяжение к Солнцу уменьшилось.
Луна отошла в сторону, Солнце снова сияло, физики смотрели друг на друга, не зная, радоваться или paсстраиваться. С одной стороны, могла рассыпаться теория, с которой они были согласны, с другой стороны тем важнее результат для науки. Эксперимент подтверждающий— лишь подкрепление, эксперимент опровергающий — открытие.
А в конце концов оказалось, что прибор приходит в движение и тогда, когда Солнце… закрыто облаками. Это уже было невероятно: как облако, закрыв Солнце, могло воздействовать на аппаратуру?
Оказалось, могло. Понижение температуры воздуха, вызванное сначала солнечным затмением, потом облаком, прикрывшим Солнце, чуть-чуть охладило стену дома, у которой стоял прибор, произошли ничтожнейшие изменения в его равновесии — и результат оказался налицо. Хорошо еще, что день был облачным. Иначе итоги эксперимента были бы опубликованы, а потом репутация экспериментаторов пострадала бы. Но до этого пострадала бы наука.
Общая теория относительности при своем появлении объяснила движение перигелия Меркурия, а спустя три года была подписана Солнцем. Но затем дело с новыми ее экспериментальными проверками застопорилось. Слишком незначительно по величине было большинство предсказываемых ею эффектов, чтобы их можно было проверить при тогдашней измерительной технике.
Вот как пишут об этом Мизнер, Торн и Уилер: «В первые полвека своего существования общая теория относительности была раем для теоретиков и адом для экспериментаторов. Нельзя было представить себе теорию более прекрасную, но в то же время с таким трудом поддающуюся проверке. Но ситуация изменилась. За последние несколько лет общая теория относительности превратилась в одну из наиболее оживленных и плодотворных областей экспериментальной физики. Спустя полвека развитие техники наконец-то достигло уровня эйнштейновского гения — не только в области астрономии, но и в лабораторных экспериментах». Закапчивается это рассуждение фразой: «Теперь она (общая теория относительности. — Р. П.) рай для всех…»
Любопытно отметить, что большая доля проверок закона всемирного тяготения Ньютона тоже пришлась на время, отделенное от публикации закона примерно полувеком.
Еще десять — пятнадцать лег назад пересчитать все пункты, по которым теория гравитации Эйнштейна была проверена, удалось бы по пальцам одной руки. Теперь соответствующих экспериментов проведено и планируется столько, что рассказать в этой книге удается далеко не о всех из них.
Ну, во-первых, проверка принципа эквивалентности тяжелой и инертных масс идет в актив общей теории относительности.
В ее пользу высказывается и сумма выводов, полученных в некоторых областях физики элементарных частиц.
Наблюдения Эддингтона за поведением звездного луча вблизи Солнца были повторены многократно. Но очень долго при этом результаты наблюдений (степень искривления луча) довольно сильно отклонялись в сторону от предсказания Эйнштейна. Правда, то в одну сторону, то в другую, но разброс был слишком велик, чтобы не огорчать и не беспокоить привыкших к точности астрономов.
Совсем недавно удалось решить эту проблему, только уже не с волнами света, а с сантиметровыми радиоволнами от ярких небесных радиоисточников. Точность совпадения наблюдений с предсказанием достигла двух процентов. И ни в одном из многих измерений не удалось обнаружить каких-либо «противопоказаний» против общей теории относительности.
Новые подтверждения предсказанным теорией относительности фактам были неожиданно (неожиданно ли?) обнаружены в старых звездных каталогах — списках звезд с указанием их характеристик и особенностей.
Лет десять назад советские ученые Л. Я. Арифов и Р. К. Кадыев нашли еще целых сто тридцать пять «звездных автографов», выданных Эйнштейну.
Чтобы стала понятна самая суть дела, придется коснуться метода определения расстояний до звезд. Один из двух главных способов (а до конца XIX века и единственный) заключается в измерении расстояния, на которое звезда смещается на нашем небе за полгода в зависимости от того, в какой точке своей орбиты находится Земля. Астрономы строят прямоугольный треугольник, его гипотенуза — расстояние от Солнца до звезды, а малый катет — большая полуось эллипса земной орбиты. Малый угол (при звезде) в том треугольнике называют годичным звездным параллаксом. Вычисление его размера по законам тригонометрии и позволяет затем определить расстояние до звезды. Годичный параллакс в одну секунду соответствует здесь одному парсеку, причем чем меньше параллакс, тем дальше от нас звезда. К слову сказать, для самой близкой к Земле звезды, которую так и зовут Ближайшая Центавра, параллакс равен семидесяти шести сотым секунды.
Теперь (уже почти столетие) годичный параллакс и, соответственно, расстояние до звезды умеют определять еще и на основании изучения ее спектра, так называемым астрофизическим методом.
Арифов и Кадыев впервые обратили внимание на то, что при этих двух методах должны (должны!) получаться несколько разные результаты. Ведь луч звезды, согласно общей теории относительности, искривляется в поле тяготения Солнца. Значит, мы видим звезду не совсем на том месте, где она находится на самом деле, значит, ее параллакс первым, тригонометрическим, методом мы определяем не совсем правильно.
Между тем при астрофизическом методе определения параллакса на его величине эффекты, связанные с геометродинамикой Эйнштейна, не сказываются, результат получается более точным. Разницу между астрофизическим и тригонометрическим параллаксами можно определить расчетом.
Ученые так и сделали — и средняя разница составила четыре тысячных доли секунды.
А затем они взяли звездный каталог на две тысячи двести восемьдесят девять звезд с указанием для каждой из них того и другого параллакса и выбрали из этих звезд сто тридцать пять, для которых тот и другой годичные параллаксы были определены с одной и той же степенью точности.
Ну и вот, все астрофизические параллаксы оказались больше, чем соответствующие тем же звездам тригонометрические, больше как раз на те предварительно вычисленные четыре тысячные секунды.
Так звездный каталог оказался сборником звездных подписей под теорией гравитации Эйнштейна.
В теории Ньютона свет движется с бесконечной скоростью, и на его частоту никак поле тяготения не действует. Согласно же общей теории относительности частота света и вообще электромагнитных волн должна в гравитационном поле изменяться. Причем если свет идет по направлению к центру тяготения, частота повышается, если от центра тяготения — понижается. Этот факт был проверен многократно, начиная с 1960 года.
В первых экспериментах фотоны, частицы света, заставляли «подниматься» на высоту двадцать два с половиной метра против земной силы тяжести в трубке, заполненной гелием и помещенной в шахту. При этом предсказания Эйнштейна были подтверждены с точностью до одного процента. Не так давно был поставлен эксперимент, в котором электромагнитные волны шли в гравитационном поле Земли от источника излучения до его приемника десять тысяч километров. Естественно, опыт ставился с участием космической ракеты. Результаты совпадали с предсказанием с точностью до четырех сотых процента.
Факты, полученные нами, должны быть верными; для гипотез, если они плодотворны, это необязательно, а будучи полностью подтвержденной, теория лишается оплодотворяющей силы. Она вызывает к жизни опыты, дающие новые факты, только до тех пор, пока мы сомневаемся в ее справедливости.
Подтвердили общую теорию относительности опыты по радиолокации планет и космических кораблей с Земли. Радиолуч, отраженный от спутника, находящегося на орбите Марса, запаздывает с приходом на Землю на двести миллионных долей секунды, если по дороге ему приходится пролетать вблизи Солнца. Задержка в экспериментах с точностью до двух процентов соответствует предсказаниям общей теории относительности.
Как видите, обо всех уже выполненных экспериментах приходится монотонно повторять: соответствует… отвечает… с точностью до стольких-то процентов (стольких-то миллиардных долей). Это хорошо, поскольку подтверждает, что работающие в гравитации физики руководствуются на сегодня правильной теорией; это плохо, поскольку сказано же: самое лучшее для науки, когда точно поставленный эксперимент противоречит хорошо обоснованной теории.
А дальше… Мало того, что физики собираются повторять и повторять уже получившиеся опыты со все большей точностью. Они придумывают новые.
В этой книге уже не раз теория Эйнштейна сопоставлялась с теорией Максвелла. Причины тому носят не только исторический и философский характер, но и имеют глубокий физический смысл. У электромагнитного и гравитационного полей немало общих закономерностей. В том лишь беда, что снова и снова гравитационщики упираются лбом в слабость гравитационного воздействия.
Как все просто в электромагнетизме: возьмите две катушки, в которых протекает электрический ток, сблизьте их — и они будут притягиваться или отталкиваться в зависимости от взаимного направления токов. И для того, чтобы обнаружить такое притяжение или отталкивание, не обязательны даже приборы — «взаимодействие» катушек ощутят и оцепят руки, которые их держат.
Точно так же, если вращать два расположенных рядом шара в одну сторону, их гравитационное взаимодействие должно, по общей теории относит