Чем мир держится? — страница 2 из 38

Еще более впечатляющую картину дает сравнение сил взаимодействия между двумя электронами (электромагнитный заряд у каждого из них по абсолютной величине тот же, что у протона, зато масса почти в две тысячи раз меньше массы протона). Здесь электромагнитные силы уже десять в сорок третьей степени раз больше гравитационных — как раз во столько же раз, во сколько раз Земля тяжелее одной десятиквадрильонной доли грамма.

Нет в нашем мире силы слабее, чем гравитация!

Но проигрывая в этом, гравитация- берет свое и на планете и во Вселенной благодаря другим своим качествам. Сильные взаимодействия сверхмогучи, но место действия у них очень ограниченное — атомное ядро.

У электромагнитных сил область приложения куда шире. Но и они по масштабам своего действия далеко уступают гравитации. Ведь частицы и тела могут иметь как положительные, так и отрицательные заряды, могут быть и нейтральными. В космических телах и масштабах эти заряды, естественно, складываются и почти целиком— по воздействию на окружение космического тела — «взаимоуничтожаются».

О слабых взаимодействиях, проявляющихся лишь на уровне элементарных частиц, и говорить нечего. Слишком узко поле их действия.

А слабой гравитации подвластно все — от света до звезд, и расстояние даже межзвездное для нее не преграда. Гравитационные заряды всегда «складываются». Мы не знаем вещества, которое бы не несло «гравитационного заряда». О гравитации порой говорят как о всеобщем свойстве материи. Это универсальная, самая «тотальная» из известных человеку сил природы.

А может, мы поспешили, назвав ее всеобщей, если она значительна только в макро- и мегамире, то есть в мире больших и гигантских величин? Пожалуй, нет, не поспешили. Да, в молекуле, атоме, атомном ядре гравитация не играет никакой роли. Слишком велики межатомные и даже межнуклонные расстояния при сверхничтожных размерах масс атомов и элементарных частиц. Но по мере нашего проникновения в глубь материн мы, быть может, выйдем к таким структурным частям элементарных частиц, расстояния между которыми окажутся настолько ничтожны (по сравнению с их массами), что гравитация вновь заявит здесь о себе во весь голос.

Мало того. Все остальные взаимодействия могут носить двоякий характер. Тела, несущие электромагнитные заряды одного знака, отталкиваются, тела с зарядами противоположного знака притягиваются. В атомном ядре на одном расстоянии сильное взаимодействие проявляется в притяжении нуклонов (протонов и нейтронов) друг к другу, на более близком расстоянии — во взаимоотталкивании я дер пых частиц. Слабое взаимодействие тоже может происходить по-разному…

А вот гравитация, тяготение, всегда проявляется только в притяжении тел, она в этом отношении демонстрирует завиднейшее постоянство. Есть, правда, гипотезы о том, что просто мы имели до сих пор всегда дело только с положительным гравитационным зарядом тел, а возможна, так сказать, отрицательная масса, с другими гравитационными свойствами. В своем месте мы еще о таких гипотезах поговорим, но пока что останемся на твердой почве достоверно известных фактов.

По крайней мере две с половиной тысячи лет человек сознательно стремится понять эту силу, определить ее, осмыслить, истолковать я использовать. Его борьба за познание природы тяготения необычайно поучительна. И не только сама по себе. Проблема тяготения стала ключом к раскрытию свойств движения, пространства, времени.

Каждый закон, открытый наукой, может рассматриваться как представитель всех законов природы. История каждого открытия, сделанного человеком, — зеркало, в котором отражаются не только свойства мира, но и свойства человечества.

Законы гравитации выступают в качестве своеобразного эталона среди физических законов, образца, с которым можно сравнивать, на который можно равняться.

Недаром ведь ньютоновский закон всемирного тяготения был назван величайшим обобщением, достигнутым человеческим разумом. Американский физик Ричард Фейнман в цикле лекций, который переведен и издан у нас в стране под названием «Характер физических законов», в качестве постоянного и характерного примера использует именно закон Ньютона — «может быть, потому, что этот великий закон был открыт одним из первых и имеет любопытную… историю. Вы скажете (продолжает Фейнман): „Да, но это старая история, а мне хотелось бы услышать что-нибудь о более современной науке“. Может быть, более новой, но не более современной. Современная наука лежит в том же самом русле, что и закон всемирного тяготения».

Можно добавить и. по-видимому, Фейнман не стал бы возражать против такого добавления, что именно закон Ньютона и стал началом этого русла, он был истоком реки, проложившей русло, в котором с тех пор развивается наука. Потому, в частности, что с ним в науку по-настоящему твердо и навсегда вошло число.

История проблемы — эти два слова образуют одно понятие, у которого есть, как полагается каждому уважаемому понятию, две стороны: в данном случае эти стороны можно определить как «физическую» и «историческую».

Понимание — пусть на популярном уровне — физической стороны дела открывает нам ни более ни менее как устройство Вселенной, «план мироздания», как сказали бы в прошлом веке. Понимание движения науки, ее исторического развития дает нам представление и о законах такого развития и о людях, которые законы открывали. А этого из учебника, как правило, не узнаешь: туда попадают одни только формулы в сопровождении лишь имен тех, кто их впервые написал.

Путь к одному открытию можно рассматривать как модель пути к любому другому открытию. Можно ли руководствоваться такой моделью, когда ты ищешь пути к новым открытиям?

Алгоритма, строгого набора правил перехода от старого открытия к новому, еще никто не создал, хотя сотни людей, занимающихся так называемым науковедением, в конечном счете, по-видимому, ищут именно такой алгоритм. Но во всяком случае история науки издавна оказалась хотя бы в одном отношении в более выгодной позиции, чем просто история: если кому-то могло показаться, что история ничему не учит, то об истории науки и самый отпетый скептик этого не осмелится сказать.

Владимир Ильич Ленин писал: «Весь дух марксизма, вся его система требует, чтобы каждое положение рассматривать лишь (а) исторически; (β) лишь в связи с другими; (γ) лишь в связи с конкретным опытом истории».

Мы пройдем в книге по пути, которым развивалась идея тяготения, и будем более или менее внимательно приглядываться к наиболее заметным вехам и памятникам по сторонам этого пути.

Рассказ о жизни замечательной идеи тяготения разбит на три части. Первая — «Вчера» — посвящена ее истории до появления общей теории относительности. Вторая — «Сегодня» — говорит о современной ситуации в науке о гравитации. Третья — «Завтра или никогда» — разнородна. В ней есть главы об открытиях, в неизбежности которых ученые уверены, есть попытки заглянуть в будущее науки, есть изложение идей, в чьей реальности большинство физиков сомневается.

Разумеется, такое деление книги весьма условно. История науки — часть ее, она проникает в сегодня так же, как и в завтра.

Идеи древних греков порою живо обсуждаются и сейчас на семинарах в физических институтах, предположения, выдвинутые сотни лет назад, могут обернуться реальностью в будущих экспериментах.

Путь познания неделим.

Вчера

Догадки. Аристотель и многие другие

«Лицом к лицу лица не увидать», — сказал поэт.

Человечество же всегда стояло лицом к лицу с тяготением. Оно было слишком близко, обыденно, повседневно. К нему настолько привыкли, что не замечали.

Оказалось легче и проще догадаться, что Земля — шар (кстати, одним из веских доводов против этого в течение двух тысяч лет считался вопрос, почему с Земли тогда не падают люди, живущие на «нижней стороне» такого шара?), чем обнаружить земное притяжение.

Мы восхищаемся гением древних греков, но как странно звучит сегодня предположение вёликого Платона о том, будто твердые тела падают на землю, а вода из облаков вливается в ручьи, реки и моря потому, что «подобное стремится к подобному». И все-таки это великолепная догадка, поскольку Платон сформулировал мысль о взаимном притяжении тел, пусть и видел он это притяжение не там и трактовал его неверно.

Сначала неизбежно идут: мысль, фантазия, сказка. За ними шествует научный расчет. И уже в конце концов исполнение венчает мысль.

Константин Циолковский

На первый взгляд кажется чрезвычайно огорчительной история взаимоотношений с тяготением величайшего ученого древности Аристотеля. Создастся впечатление, что этот творец двадцати наук — от логики до метеорологии, мудрейший из мудрых, человек, которого обычно включают в список десяти ученых, больше всего сделавших для человечества, тут ошибался чуть ли нс на каждом шагу, словно не мог разобраться в элементарных вещах. Вот, например, одна цитата: «Падение массы золота, или свинца, или какого-нибудь другого тела происходит тем быстрее, чем больше его размер». Это утверждение Аристотеля, как и некоторые другие, принималось потомками на веру две тысячи лет!

Что это — абсолютное отсутствие наблюдательности у гения? Конечно, нет. Не случайно же такое «отсутствие наблюдательности» проявляли ученые на протяжении еще девятнадцати веков. И совсем не только потому, что они находились в рабском подчинении авторитету Аристотеля — подчинении, заведомо отвергавшем всякую проверку утверждений древнего философа. Ведь его выводы проверяли, и кто! — например, сам Леонардо да Винчи. Великий художник и ученый бросал тела разного веса и пришел к тому же итогу: скорость падения зависит от веса тела.

В чем же здесь дело? Тут нужно искать причины прежде всего исторического характера. Древние еще не умели, по-видимому, вкладывать точный количественный смысл в понятия «быстрее» и «медленнее». Тяжелые тела действительно падали быстрее легких, а насколько именно — поди измерь… Число стало главным героем научных сражений лишь с приходом в науку Ньютона. Ведь даже Галилей далеко не всегда придавал численным определениям должное значение.