Это все замечательно, но может ли человек левитировать сам по себе? Технически – да. Но для этого он должен оказаться в очень сильном магнитном поле (около 16 Тесла), а это большие проблемы для ферромагнетиков рядом. В магнитно-резонансном томографе, где поле до 9 Тесла, парить вы не будете.
Дело в том, что практически все вещества хоть как-то, но взаимодействуют с магнитным полем. По характеру взаимодействия их делят на ферромагнетики, парамагнетики, диамагнетики.
Ферромагнетики очень сильно намагничиваются и во внешнем магнитном поле сами становятся магнитами, поэтому очень хорошо притягиваются. Это такие активисты, подрывные личности, активно участвующие в магнитной жизни. Парамагнетики намагничиваются слабо и притяжение невелико. Это такие флегматичные, малоактивные, но податливые ребята. А вот диамагнетики намагничиваются противоположно внешнему полю, поэтому они становятся магнитами с противоположной полярностью и отталкиваются от источника магнитного поля. Это вялые, малоактивные ворчуны, которым не нравится магнитное поле, и они хотят неспешно его покинуть.
И самое главное. Диамагнетиками являются, например, висмут, пиролитический графит и вода. А из воды в большей степени состоят все живые существа, да и мы на 60 % из нее состоим. Так что живые существа могут левитировать в сильном магнитном поле. Это подтверждено опытами на лягушках, кузнечиках, мышах. Забавно, но за это исследование нобелевский лауреат Андрей Гейм в 2000 году получил Шнобелевскую премию.
Ну и если удастся создать сильное магнитное поле в достаточно большом объеме, чтобы поместился человек, нет никаких препятствий для его левитации.
Но даже если человек левитирует, как управлять полетом? У левитации действительно есть одна проблема. Если человек окажется в воздухе, то, чтобы перемещаться в пространстве, он должен отталкиваться от чего-то или использовать реактивную тягу. Иначе он будет просто барахтаться в воздухе и не сможет никуда сдвинуться. Ведь, чтобы двигаться, нужно от чего-то оттолкнуться.
6.5. Можно ли увидеть атомы по отдельности?
Со школьного возраста мы знаем, что все окружающие нас тела состоят из атомов. Но нам не показывали никаких фотографий, мы не видели их в микроскоп, а просто поверили. Так можно ли увидеть атомы по отдельности и убедиться в их существовании?
Давайте разбираться. Человеческий глаз может увидеть объекты размером не менее 0,05 мм. Но атомы намного меньше! (От 64×10−12 м до 450×10−12 м) Они настолько маленькие, что если увеличить их до размеров клубники, клубника будет размером с Землю. Поэтому увидеть их можно разве что в микроскоп. Но не все микроскопы подойдут для подглядывания за атомами.
Самый простой и старый тип микроскопов. Для того, чтобы увидеть какой-либо объект (причем не только в микроскопе), его необходимо осветить. В оптическом микроскопе для этого используется свет, который воспринимает человеческий глаз. Это волны видимого диапазона, длина волны которых колеблется от 700 до 400 нанометров.
Размер этих волн в тысячи раз больше, чем размер атомов. Поэтому при освещении отдельных атомов они огибают их. Или отражаются, не передавая структуры поверхности. Пытаться увидеть атом в оптический микроскоп – то же самое, что экскаватором ловить комара! Или как вентилятором сдуть ровно одну пылинку со стола.
В обычный оптический микроскоп любая поверхность будет видна как сплошная, а не состоящая из отдельных атомов. В него невозможно увидеть атомы и детали, размеры которых меньше половины длины волны света, то есть около 200 нанометров. Это – дифракционный предел, который присущ любым волнам. И чтобы преодолеть его, нужно освещать объект чем-то другим.
В электронном микроскопе образец освещается пучком электронов, которые не так просты, как кажется на первый взгляд. Они, как и все остальные элементарные частицы, могут проявлять волновые свойства. То есть поток электронов можно рассматривать как волну. И если разогнать его до огромной скорости, его длина волны будет меньше размеров атомов.
Дифракционный предел электронного микроскопа в тысячи раз меньше, чем у оптического. Поэтому в него можно разглядеть ну очень маленькие объекты! Электронный микроскоп может давать изображение отдельных атомов, и, хотя они получаются немного нерезкими, их все-таки можно увидеть по отдельности. Значит, они существуют, ура!
Электронные микроскопы вообще отличная штука, особенно растровые. В них пучок электронов сканирует объект, и благодаря тому, что его можно сделать очень тонким, сохраняется феноменальная резкость по всей площади изображения, чего очень сложно добиться на оптических микроскопах. Изображение получается в градациях серого, но его можно потом раскрасить. Забавно, но неметаллические предметы покрывают тонким слоем золота. Ведь под градом из электронов на поверхности быстро накапливается заряд. Золото очень хорошо проводит ток и уносит лишнее электричество.
Но, пожалуй, самый необычный и интересный – сканирующий зондовый микроскоп. В него тоже можно увидеть отдельные атомы, ведь он работает следующим образом.
Это очень тонкая игла, которая движется вдоль поверхности исследуемого объекта. Кончик иглы очень острый – его радиус закругления порядка десятков ангстрем (это несколько атомов). Он взаимодействует практически с отдельными атомами вещества, это считывается сенсорами, и компьютерными методами восстанавливается рельеф поверхности. По сути этот микроскоп не смотрит, а ощупывает поверхность с феноменальной точностью!
Есть разные типы таких микроскопов. В некоторых считывается сила электрического тока, проходящего между иглой и образцом. В других измеряется сила притяжения или отталкивания иглы от атомов образца. Есть даже такие, в которых вместо иглы используется световод и маленькое отверстие. В них регистрируется отраженный свет и возможно преодоление дифракционного предела.
С помощью зондового микроскопа можно даже разглядеть форму электронных облаков, настолько он чувствительный. Более того, его можно использовать не совсем по прямому назначению и перемещать отдельные атомы. Достаточно приложить напряжение побольше, атомы будут «прилипать» к игле, и их можно будет переносить на другое место. Уже сейчас ученые могут писать слова и даже создавать мультики из отдельных атомов! Конечно, это технология работает на наномасштабах, но можно вообразить себе, что в будущем ученые смогут создать абсолютно любое чудище.
Как видите, не все подвластно нашему взору, и в микромире обычный свет, благодаря которому мы видим то, что нас окружает, никак не может нам помочь. К счастью, есть и другие методы, благодаря которым удается убедиться в существовании атомов.
6.5.1. Как получить атомы размером с грейпфрут?
Мы давно уже привыкли, что атомы, из которых состоят все окружающие нас тела, очень маленькие. Диаметром они меньше одной миллионной миллиметра, и по отдельности видны только в электронные и зондовые микроскопы. Но ни одна теория не ограничивает размеры атомов. И действительно, можно создать атомы размером с вишню, яблоко или даже грейпфрут! Так как это сделать?
Давно известно, что электрон в атоме может находиться на определенных энергетических уровнях, которые обозначаются квантовым числом n. От этого числа зависит энергия электрона и, грубо говоря, радиус его орбиты, если считать, что он движется по окружности вокруг ядра.
В природе встречаются атомы с небольшими значениями n. И их размеры действительно невелики. Однако можно перекинуть электрон на уровень с n=1000, облучив его квантом света с тонко подобранной энергией и частотой. Здесь самое главное не переборщить, потому что при больших n уровни располагаются очень близко к самой крайней границе энергии, по достижении которой электрон вообще улетает из атома.
Так вот. Радиус орбиты зависит от квадрата n, поэтому его размеры увеличатся в 1 000 000 раз по сравнению с основным состоянием. Получается, что если атом был размером в одну десятимиллионную миллиметра, то в состоянии с n=1000 он будет размером в одну десятую миллиметра. Если его перевести в состояние с n=10000, то его диаметр будет 1 см, как у небольшой вишни. Если перевести его в состояние с n=100000, то это будет уже 100 см, в состоянии с n=32000 будет 10 см.
На данный момент созданы атомы с n=1100, но это только техническое ограничение.
Такие атомы называют ридберговскими атомами. Они обладают нереальным размером, и в них можно зафиксировать, как электрон вращается вокруг ядра. Однако такие атомы очень нестабильны. Так как электрон находится очень далеко от ядра, то любое столкновение с другим атомом, любой попавший на него фотон будут приводить к выбиванию электрона из атомов, и такое состояние будет потеряно. Так что, несмотря на то, что создать такие атомы можно, потрогать их не получится. Да и увидеть тоже, ведь для этого атом нужно осветить, а при освещении любые фотоны будут не отражаться, а поглощаться.
Интересно то, что ученые нашли такие атомы в далеких космических туманностях. Там они могут летать длительное время без столкновений и существовать в таком состоянии достаточно долго.
Забавно, но в таком случае возможна ситуация – атом внутри атома.
Итак, теперь мы знаем, что такие микрообъекты, как атомы, при определенных условиях могут быть достаточно крупными. Так что их и микро-то не назовешь. А вот насколько сильно мы можем их уменьшить? Каков их минимальный размер?
Что касается полноценного атома, то для любого из них можно рассчитать минимальный радиус. Он будет достигаться, когда все электроны заняли самые низкие энергетические состояния. Например, для атома водорода в состоянии