Черные дыры и складки времени — страница 36 из 131

и «стипендиат постдок» или просто «постдок».

Почему именно в Западную Европу? Потому, что в 20-х годах она являлась Меккой теоретической физики, местом жительства почти всех ведущих мировых физиков-теоретиков. Советские лидеры, отчаянно пытающиеся переместить теоретическую физику из Западной Европы в СССР, не имели другого выбора, кроме как послать на стажировку своих молодых теоретиков, несмотря на всю опасность идеологической заразы.

Среди всех молодых советских теоретиков, проделавших путь в Ленинград, затем в Западную Европу и обратно в СССР, Лев Давидович Ландау окажет, пожалуй, наибольшее влияние на развитие физики. Родившись в 1908 г. в обеспеченной еврейской семье (его отец был инженером-нефтяником в Баку, расположенном на берегу Каспийского моря), он в возрасте 16 лет поступил в Ленинградский университет и закончил его в 19 лет. После всего лишь двухлетнего обучения в аспирантуре Ленинградского Физико-технического института Ландау защитил кандидатскую диссертацию и был послан в Западную Европу, где провел 18 месяцев в 1929–1930 гг., путешествуя между знаменитыми центрами теоретической физики Швейцарии, Германии, Дании, Англии, Бельгии и Голландии.

Проходивший стажировку тогда же в Цюрихе уроженец Германии Рудольф Пайерлс позже писал: «Я живо помню то огромное впечатление, которое произвел на нас Ландау, впервые появившись в группе Вольфганга Паули в Цюрихе в 1929 г… Не потребовалось много времени, чтобы обнаружить глубину его понимания современной физики и опыт в решении фундаментальных проблем. Он редко вчитывался в детали теоретической работы, а лишь внимательно проглядывал ее, чтобы увидеть, представляет ли интерес рассматриваемая проблема, и если да, то каков подход автора к ее решению. Затем он сам принимался за вычисления, и если его ответ совпадал с приводимым автором, работа получала одобрение». Пайерлс и Ландау стали лучшими друзьями.

Высокий и худощавый, чрезмерно требовательный к себе и другим, Ландау сокрушался, что не родился на несколько лет раньше. Он считал, что золотой век физики пришелся на 1925–1927 гг., когда де Бройль, Шредингер, Гейзенберг, Бор и другие создавали новую квантовую механику: родись Ландау ранее, он смог бы принять в этом участие. «Все хорошенькие девушки уже замужем, все интересные задачи уже решены, и мне не нравятся те, что остались», — заявил он как-то в минуту отчаяния в 1929 г. в Берлине. Однако фактически изучение следствий из законов квантовой механики и теории относительности только начиналось, и эти следствия сулили еще немало поразительных сюрпризов: структура атомных ядер, атомная энергия, черные дыры и их испарение, сверхтекучесть, сверхпроводимость, транзисторы, лазеры, ЯМР-спектроскопия… И Ландау, несмотря на свой пессимизм, станет центральной фигурой в увлекательном поиске этих следствий.



Слева: Лев Ландау в студенческие годы в Ленинграде в середине 1920-х. Справа: Студенческие забавы Ландау с друзьями студентами-физиками Георгием Гамовым и Евгенией Канегиессер во время обучения в Ленинграде, около 1927 г. На самом деле Ландау никогда не умел играть ни на одном музыкальном инструменте. [Слева: предоставлено Визуальным архивом Эмилио Сегре Американского института физики из коллекции Маргарет Бор. Справа: предоставлено Библиотекой Конгресса]


После возвращения в Ленинград в 1931 г. Ландау, будучи ревностным марксистом и патриотом, исполнился решимости посвятить свою карьеру перемещению центра современной теоретической физики в Советский Союз. Как мы увидим в последующих главах, он в этом необычайно преуспел.

Вскоре после возвращения Ландау опустился сталинский «железный занавес», сделавший дальнейшие путешествия на Запад практически невозможными. Георгий Гамов, соученик Ландау по Ленинграду, позже вспоминал: «Русская наука стала еще одним из видов оружия, направленным на борьбу с миром капитализма. Так же как Гитлер делил науку и искусство на еврейские и арийские, Сталин ввел понятия капиталистической и пролетарской науки. (Стало)… преступным для русских ученых «общаться» с учеными из капиталистических стран».

Политический климат из плохого стал ужасным. В 1936 г. Сталин, уже убивший 6 или 7 миллионов крестьян и кулаков (землевладельцев) в ходе насильственной коллективизации в сельском хозяйстве, организовал продолжавшиеся в течение нескольких лет чистки среди политических и интеллектуальных лидеров, чистки, называемые теперь «Великим террором». Во время репрессий были расстреляны почти все члены первоначального ленинского Политбюро, расстреляны или пропали без вести высшие командиры Советской Армии, 50 из 71 членов Центрального Комитета Коммунистической партии, большинство советских послов в зарубежных странах, премьер-министры и главы правительств других, «нерусских» советских республик. На нижних уровнях общества примерно 7 миллионов человек были арестованы и посажены в тюрьмы, 2,5 миллиона человек погибло — половину из них составляли представители интеллигенции, включая большое число ученых, а иногда и целиком исследовательские группы. Советская биология, генетика и сельскохозяйственная наука были полностью разгромлены.

В конце 1937 г. Ландау, теперь лидер в области теоретической физики Москвы, почувствовал на себе жаркое дыхание приближающихся репрессий. В панике он бросился искать защиты. Один из возможных путей защиты состоял в том, чтобы поставить себя, как замечательного ученого, в фокус общественного внимания, и потому он обратился к поиску таких научных идей, которые смогли бы вызвать заметный всплеск интереса, как на Востоке, так и на Западе. Его выбор остановился на идее, над которой он размышлял с начала 30-х годов, — идее о том, что «нормальные» звезды, такие как Солнце, могут содержать в центре нейтронные звезды, или нейтронные ядра, как назвал их Ландау.

* * *

У Ландау были следующие основания так полагать: Солнце и другие нормальные звезды сдерживают сжимающие силы собственной гравитации с помощью термического (обусловленного теплом) давления. Излучив тепло и свет в космос, Солнце должно охладиться, уменьшиться в размерах и умереть примерно через 30 млн лет, если только не найдется иного способа восполнить теряемое им тепло. Поскольку в 1920— 1930-х годах уже существовали неоспоримые геологические свидетельства того, что на Земле в течение миллиарда лет и более поддерживалась примерно постоянная температура, Солнце должно было как-то восполнять теряемое ей тепло. Артур Эддингтон в середине 20-х верно предположил, что новое тепло могло возникать в ходе ядерных реакций, в которых один тип атомных ядер превращается в другой, — то, что теперь называют ядерным распадом и термоядерным синтезом. Однако детали этих процессов к 1937 г. еще не были разработаны настолько, чтобы физики смогли утверждать, что все это способно работать. С этой точки зрения «нейтронные ядра» Ландау оказались очень привлекательной альтернативой.


5.4. Сценарий Льва Ландау, объясняющий происхождение энергии, нагревающей нормальную звезду. Звездное тепло поступает от сверхплотного нейтронного ядра (слева). Тепло выделяется, когда нормальные атомы (штриховые стрелки) захватываются нейтронным ядром (справа)


Так же как Цвикки мог представить себе подпитку сверхновой энергией, освобождаемой при схлопывании нормальной звезды, так и Ландау мог предположить, что Солнце и другие нормальные звезды питаются энергией, высвобождающейся, когда их атомы один за другим захватываются нейтронным ядром (рис. 5.4).

Захват атома нейтронным ядром во многом похож на падение камня с большой высоты на цементную плиту: гравитация тянет камень вниз, ускоряя его до большой скорости, и когда он ударяется о плиту, его огромная энергия движения может раздробить камень на тысячи осколков. Точно так же, рассуждал Ландау, гравитация должна сильно ускорять и атомы, падающие на нейтронное ядро звезды. Когда такой атом врезается в ядро, эта разрушительная остановка преобразует его гигантскую энергию движения (энергию, эквивалентную 10 процентам его массы) в тепло. В таком сценарии конечным источником солнечного тепла является рост гравитации его нейтронной сердцевины; и так же, как и в случае сверхновых Цвикки, гравитация ядра обеспечивает 10-процентную эффективность преобразования массы падающих атомов в тепло.


Врезка 5.3

Сравнение ядерного и обычного горения


Обычное горение — это химическая реакция. В химических реакциях атомы соединяются в молекулы, атомы делят между собой электронные облака, которые и скрепляют молекулы. Ядерное горение — это ядерная реакция. В ядерном горении атомные ядра соединяются вместе, синтезируя (термоядерный синтез) более массивные атомные ядра, которые скрепляются ядерными силами.

Следующая диаграмма показывает пример обычного горения: горение водорода с образованием воды (взрывное сильное горение, которое используется в некоторых ракетах для выведения грузов в космос). Два водородных атома объединяются с атомом кислорода и образуют молекулу воды. В молекуле воды атомы водорода и кислорода делят электронные облака между собой, но атомные ядра существуют отдельно.



Следующая диаграмма показывает пример ядерного горения: слияние ядра дейтерия («тяжелый водород») и обычного ядра водорода с образованием ядра гелия-3. Это одна из реакций синтеза, которая, как теперь известно, питает Солнце и другие звезды и дает энергию водородным бомбам (Глава 6). Ядро дейтерия содержит один нейтрон и один протон, связанные ядерной силой, ядро водорода состоит из единственного протона; ядро гелия-3 возникшее при слиянии, содержит один нейтрон и два протона.



Распад ядерного топлива (Врезка 5.3), в отличие от захвата атомов нейтронным ядром звезды (рис. 5.4), может преобразовать в тепло лишь несколько десятых массы исходного ядерного горючего. Другими словами, источник тепла Эддингтона (ядерная энергия) является пример но в 30 раз менее мощным, чем источник Ландау (гравитационная энергия).