Если бы делу не помешала вторая мировая война и последовавшая за ней холодная война, Оппенгеймер со своими учениками или еще кто-нибудь скорее всего исследовали бы эту возможность и строго показали бы, что такого четвертого кладбища нет.
Однако вторая мировая война разразилась и поглотила энергию почти всех физиков-теоретиков мирового уровня; затем, после войны, разрушительные программы создания водородных бомб опять отодвинули сроки возвращения физиков к нормальным исследованиям. Наконец, в середине 50-х годов два физика, оставив свою работу в проектах по созданию водородной бомбы, обратились к тому, на чем остановились Оппенгеймер и его ученики. Это были Джон Арчибальд Уилер из Принстонского университета в Соединенных Штатах и Яков Борисович Зельдович в Институте прикладной математики в Москве — два выдающихся физика, которые будут главными фигурами в дальнейшем изложении.
В марте 1956 г. Уилер несколько дней посвятил изучению статей Чандрасекара, Ландау, Оппенгеймера и Волкова. Он понял, что здесь еще оставалась загадка, которую стоило попробовать решить. Правда ли, что у звезды, более массивной, чем 1,4 Солнца, нет после смерти другого выбора, чем образовать черную дыру? «Из всех выводов общей теории относительности, касающихся структуры и эволюции Вселенной, этот вопрос о судьбе огромных масс вещества является наиболее интригующим», — писал вскоре после этого Уилер; и он взялся закончить начатое Чандрасекаром, Оппенгеймером и Волковым исследование звездных могил.
Чтобы уточнить стоящую перед ним задачу, Уилер дал аккуратную характеристику типа вещества, из которого должны состоять остывшие мертвые звезды. Он назвал его веществом в конце термоядерной эволюции, поскольку слово термоядерный приобрело популярность для обозначения реакций синтеза, дающих энергию ядерному горению в звезде и в водородной бомбе. Такое вещество должно было бы быть абсолютно холодным, с полностью выработанным ядерным горючим, так что не оставалось больше возможности извлечь из его ядер дополнительную энергию. Поэтому здесь вместо выражения «вещество в конце термоядерной эволюции» будет использоваться название «холодное мертвое вещество».
Уилер поставил перед собой задачу определить все объекты, которые могут быть сделаны из холодного неорганического вещества. Это могут быть малые объекты типа железных шариков, более тяжелые объекты, такие как мертвые железные планеты, и еще более тяжелые объекты: белые карлики, нейтронные звезды и какие-то другие типы холодных и мертвых объектов, допускаемых законами физики. Уилер хотел получить полный каталог холодных и мертвых объектов.
Уилер работал во многом подобно Оппенгеймеру — в окружении аспирантов и постдоков. Среди них для работы над деталями уравнения состояния холодного мертвого вещества, он выделил Б. Кента Гаррисона, сурового мормона из штата Юта. Уравнение состояния позволило бы детально описать, как возрастает давление вещества, если последовательно сжимать вещество, до больших и больших плотностей, или, что то же самое, как с увеличением плотности изменяется сопротивление сжатию.
Джон Арчибальд Уилер, около 1954 г. [Фото Блэкстона-Шелбурна, Нью-Йорк, предоставлено Дж. А.Уилером]
Уилер был прекрасно подготовлен к тому, чтобы задать направление вычислениям Гаррисона уравнения состояния холодного мертвого вещества, поскольку был крупнейшим экспертом в области законов физики, управляющих структурой материи, законов квантовой механики и ядерной физики. В течение предшествующих двадцати лет он создал мощную математическую модель, описывающую поведение атомных ядер; вместе с Нильсом Бором он разработал законы атомного распада (деление на части тяжелых атомных ядер, таких как уран и плутоний, лежащее в основе атомной бомбы); он был также руководителем группы, разработавшей американскую водородную бомбу. Опираясь на свой опыт, он помог Гаррисону обойти все трудности анализа.
Результатом их анализа стало уравнение состояния холодного, мертвого вещества. При плотностях белых карликов это было то же уравнение состояния, что и использованное Чандрасекаром (глава 4); при плотностях нейтронной звезды оно совпадало с результатом Оппенгеймера и Волкова; при плотностях ниже плотности белых карликов и в промежутке между белыми карликами и нейтронными звездами оно было совершенно новым.
Врезка 5.5
Уравнение состояния Гаррисона — Уилера, описывающее холодное мертвое вещество
Рисунок внизу показывает уравнение состояния Гаррисона — Уилера. По горизонтали отложена плотность вещества. По вертикали — сопротивление сжатию (или адиабатический индекс, как обычно называют его физики) — увеличение давления в процентах, сопровождающее 1 %-ное увеличение плотности. В квадратах рядом с кривой показано то, что происходит с веществом на микроскопическом уровне при его сжатии от низких до высоких плотностей. Размер показанной области указан в сантиметрах сверху квадрата.
При нормальных плотностях холодное мертвое вещество состоит из атомов железа. Если бы оно состояло из атомов, имеющих более тяжелые ядра, то из него можно было бы извлечь энергию, расщепляя ядра до ядер железа в реакциях деления (как в атомной бомбе). Если же оно состояло бы из более легких атомов, то энергия могла бы выделиться при объединении ядер в ядра железа в реакциях термоядерного синтеза (как в водородной бомбе).
В форме железа вещество уже не может никаким образом высвободить ядерную энергию. Ядерные силы удерживают нейтроны и протоны в железных ядрах сильнее, чем в любых других видах атомных ядер.
При сжатии железа относительно его нормальной плотности 7,6 граммов на кубический сантиметр до 100, а затем до 1000 граммов на кубический сантиметр железо сопротивляется сжатию таким же образом, как и любой камень: электроны каждого атома реагируют на сжатие между электронами ближайших атомов «клаустрофобным» (вырожденным) движением. Сначала сопротивление огромно, не потому что отталкивающие силы особенно сильны, а, скорее потому, что начальное давление при малой плотности очень слабое. (Вспомните, что сопротивление сжатию есть увеличение давления, выраженное в процентах, которое сопровождает 1 %-ное увеличение плотности. Если давление слабое, то его небольшое увеличение приводит к огромному увеличению в процентах и, таким образом, дает огромное сопротивление. Затем, при более высоких плотностях, когда давление становится сильнее, большое увеличение давления порождает намного более скромное увеличение процента и, таким образом, дает более скромное сопротивление.)
Поначалу при сжатии холодного вещества электроны собираются вокруг железных ядер, формируя электронные облака, образованные электронными орбиталями. (На каждой орбитали фактически находятся два электрона, а не один. Эта тонкость была упущена в главе 4, но кратко обсуждается во Врезке 5.1.) С ростом сжатия каждая орбиталь и два ее электрона постепенно заключаются во все меньшую и меньшую ячейку пространства; клаустрофобные электроны препятствуют этому ограничению, становясь все более подобными волне, и развивают все более высокие скорости хаотических клаустрофобных движений («движения вырождения»; см. главу 4). Когда плотность достигает 105 (100000) граммов на кубический сантиметр, движение вырождения электронов и давление вырождения, которое им порождается, становятся настолько большими, что они полностью подавляют электрические силы, с которыми ядра притягивают электроны. Электроны больше не собираются вокруг железных ядер и полностью их игнорируют. Холодное неорганическое вещество, которое вначале было глыбой железа, теперь становится веществом, из которого сделаны белые карлики, а уравнение состояния становится тем уравнением, которое Чандрасекар, Андерсон и Стонер получили в начале 1930-х (рис. 4.3): с сопротивлением 5/3 и затем с гладким переходом к 4/3 для плотностей, приблизительно равных 10 граммов на кубический сантиметр, когда скорости хаотических движений электронов приближаются к скорости света.
Переход от вещества белых карликов к веществу нейтронных звезд начинается, согласно вычислениям Гаррисона — Уилера, при плотности 4x1011 граммов на кубический сантиметр. Вычисления показывают несколько фаз перехода. В первой фазе электроны начинают вжиматься в атомные ядра, и их заглатывают протоны ядер, превращаясь в нейтроны. Вещество, потеряв, таким образом, часть электронов, поддерживающих давление, внезапно становится намного менее стойким к сжатию. Это вызывает резкий обрыв в уравнении состояния (см. диаграмму выше).
В процессе развития этой фазы сжатия атомные ядра становятся все более насыщенными нейтронами, что вызывает вторую фазу: нейтроны начинают просачиваться (выдавливаться) из ядер в межядерное пространство, где еще осталось немного электронов. Эти просочившиеся нейтроны, как и электроны, противодействуют продолжающемуся сжатию собственным давлением вырождения. Это нейтронное давление вырождения прекращает обрыв в уравнении состояния, сопротивление сжатию возвращается и начинает увеличиваться. В третьей фазе, при плотности приблизительно между 1012 и 4x1012 граммов на кубический сантиметр, все пересыщенные нейтронами ядра полностью распадаются, т. е. разваливаются на отдельные нейтроны, образующие нейтронный газ, изученный Оппенгеймером и Волковым, с малой примесью электронов и протонов. С этого момента при повышении плотности уравнение состояния принимает вид уравнения состояния Оппенгеймера — Волкова нейтронных звезд (штриховая кривая на диаграмме, если ядерные силы игнорируются; сплошная кривая, если воспользоваться лучшим пониманием ядерных сил 1990-х).
* * *
Имея на руках это уравнение состояния холодного мертвого вещества, Джон Уилер попросил Масами Вакано, постдока из Японии, проделать то же, что сделал для нейтронных звезд Волков, а для белых карликов Чандрасекар: соединить уравнения состояния с уравнениями общей теории относительности, описывающими баланс гравитации и давления внутри звезды. Потом из этого соединения получить дифференциальное уравнение, описывающее структуру звезды, а затем численно решить это дифференциальное уравнение. Численные расчеты раскроют детали внутренней структуры всех