ия их направлений; если мы когда-либо и будем управлять погодой, нам, конечно, потребуется что-нибудь в этом роде. Управление гравитацией в космических кораблях имеет значение как для работы силовых установок, так и для обеспечения комфорта их экипажей, но у него есть и другие применения в космонавтике, которые не столь очевидны. Крупнейшая из планет, Юпитер, недоступна для непосредственного исследования человеком вследствие высокого уровня гравитации, который в два с половиной раза превышает земной. Этот гигантский мир имеет так много других отрицательных характеристик (например, турбулентную и ядовитую атмосферу огромной плотности), что немногие ученые относятся сколько-нибудь серьезно к мысли о возможности попыток непосредственного обследования его человеком; предполагается, что мы всегда будем прибегать для таких целей к услугам роботов.
Я лично сомневаюсь в этом. Так или иначе обязательно будут случаи, когда роботы попадут в какую-нибудь переделку и людям придется их выручать. Рано или поздно возникнет необходимость исследования Юпитера самим человеком; когда-нибудь мы, возможно, захотим даже основать там постоянную базу. Для этого нам понадобится какая-то форма управления гравитацией — иначе придется вывести специальную расу юпитерианских колонистов, обладающих конституцией горилл (более подробно об исследовании Юпитера будет рассказано в главе 9).
Если все это выглядит очень фантастичным и далеким, то я позволю себе напомнить читателю, что есть еще более важная для нас планета с высоким уровнем гравитации, на которую лет этак через пятьдесят люди, возможно, тоже окажутся не в силах ступить. Эта планета — наша родная Земля.
Не научившись управлять гравитацией, мы обречем наших космических путешественников и поселенцев на вечное изгнание. Человек, проживший несколько лет на Луне, где его вес равен всего 1/6 земного веса, вернувшись на Землю, окажется беспомощным калекой. Ему могут понадобиться месяцы мучительной тренировки, прежде чем он снова научится ходить, а дети, родившиеся на Луне (как это обязательно будет в следующем поколении), может быть, так и не сумеют приспособиться к новым условиям.
Чтобы избежать этого, нам понадобится подлинно портативная установка для управления гравитацией, настолько компактная, чтобы ее можно было носить за плечами или вокруг пояса. Более того, она могла бы стать даже постоянным элементом одежды человека, чем-то само собой разумеющимся, вроде ручных часов или карманного транзисторного приемника. Человек мог бы применять ее для снижения своего веса до нуля или в качестве источника движения.
Всякий, кто готов признать осуществимость управления гравитацией, не должен отрицать возможности дальнейших усовершенствований в этой области. Миниатюризация стала уже одним из заурядных чудес нашего века — не известно, к лучшему или к худшему. Первая термоядерная бомба была величиной с дом; нынешние боевые головки «экономичного размера» имеют величину мусорного ведра, причем одно такое ведерко выделяет энергию, достаточную, чтобы забросить лайнер «Куин Элизабет» на Марс. Мне этот будничный факт современной ядерной техники представляется куда более фантастичным, чем вероятность разработки индивидуальных средств управления гравитацией.
Индивидуальный гравитатор, если он будет не очень дорог в изготовлении, может стать одним из самых революционных изобретений всех времен. С его помощью мы избавились бы, подобно птицам и рыбам, от тирании вертикали, обрели бы свободу перемещения в любой плоскости. В городах никто не пользовался бы лифтами, если есть достаточно удобное окно. Высокая подвижность, которую мы приобрели бы таким образом, притом без всяких усилий, заставила бы нас переучиваться и привыкать к почти птичьей жизни. Все это уже не будет для нас столь необычным, когда войдет в нашу жизнь, — к тому времени бесчисленные фильмы о космонавтах на орбите приучат всех к представлению о невесомости и пробудят у людей стремление испытать связанные с ним приятные ощущения. Может быть, левитатор сыграет такую же роль в горах, какую акваланг сыграл на море. Профессиональные проводники по горам будут, конечно, негодовать, но что поделаешь — прогресс неумолим. Толпы туристов, парящих над Гималаями, и толкучка на вершине Эвереста, напоминающая пляжи во Флориде или близ Канн, — это лишь вопрос времени.
Даже если предел желаемого — индивидуальная левитация — окажется недостижимым, мы все же, возможно, научимся строить небольшие машины, в которых будем медленно и бесшумно (важно и то и другое) плавать в небе. Еще в прошлом поколении сама идея парения в пространстве казалась нереальной, пока вертолет не подтвердил ее осуществимости. Ныне, когда экспериментальные машины на воздушной подушке плавают куда хотят, мы не успокоимся, пока не сможем скользить над Землей по своей воле и с той свободой, какой нам не в силах дать ни автомобиль, ни самолет.
К чему приведет такая свобода, никто сказать не может. У меня есть только одно, заключительное предположение. Когда мы научимся управлять гравитацией, в воздух смогут подняться и наши жилища. Дома уже не будут прикованы к одному месту и станут гораздо более подвижными, чем нынешние туристские автоприцепы; они смогут легко перемещаться по суше и по морю, с одного континента на другой, из одной климатической зоны в другую; будут следовать за солнцем, за сменой времен года или отправляться в горы на зимний спортивный сезон.
Первые люди были кочевниками; ими могут оказаться и последние, только на бесконечно более высоком техническом уровне. Дом, обладающий полной мобильностью, потребует не только неосуществимой пока что системы двигателей, но и энергоснабжения, связи и других видов обслуживания на уровне, опять-таки недосягаемом для современной техники. Для современной, но не для будущей, как мы убедимся немного позднее.
Это повлечет за собой гибель больших городов, которая может оказаться неизбежной и по многим другим причинам. Это будет означать также и конец всех географических и региональных привязанностей, во всяком случае в той острой форме, с какой мы встречаемся сейчас. Человек станет странником, блуждающим по Земле, цыганом, водящим свой движимый ядерной энергией табор через небесные пустыни от одного оазиса к другому.
И все же, когда придет такой день, человек не почувствует себя бездомным изгнанником, не имеющим родного угла. Шар, вокруг которого можно облететь за 90 минут, уже никогда не будет для людей тем, чем он был для наших предков. Людям, которые придут после нас, истинное одиночество грозит только в межзвездном пространстве. А на этой маленькой Земле всюду, куда бы ни отправились наши потомки, они везде будут чувствовать себя дома.
6В погоне за скоростью
Наш век часто называют «веком больших скоростей», и для такого эпитета есть все основания. Никогда ранее скорость передвижения не возрастала такими потрясающими темпами, и, возможно, что они никогда уже не будут превзойдены.
Чтобы убедиться в справедливости сказанного, составим таблицу, в которой перечислим все мыслимые диапазоны скоростей, расположив их в порядке возрастания, и укажем с точностью до десятилетия дату освоения каждого нового диапазона. Результаты получаются поистине ошеломляющие:
Затратив всю свою предысторию и большую часть исторического периода на освоение двух первых диапазонов, человечество пронеслось сквозь третий за срок жизни одного поколения. Я не знаю точной даты, когда паровоз достиг рубежа скорости 150 километров, но это определенно стало возможным примерно к 1880 году. Поезд «Эмпайр стейт экспресс» развил скорость 175 километров в час на линии «Нью-Йорк-сентрал» в 1893 году.
Еще более удивителен тот факт, что весь четвертый диапазон мы преодолели за десять с небольшим лет: с точностью, достаточной для наших целей, можно считать, что в период с 1950 по 1960 год был совершен гигантский скачок от полета со сверхзвуковыми скоростями в атмосфере к орбитальному полету вне ее пределов.
Этот скачок явился следствием невиданного успеха в области ракетостроения, прорыва, который привел, как сказали бы математики, к разрывности кривой нарастания скоростей. Нам вряд ли следует рассчитывать на то, что развитие в этой области будет идти подобными же темпами, иначе мы, например, должны были бы еще до 1970 года достичь рубежа 150 000 километров в час. Это в принципе возможно, однако весьма маловероятно. Еще менее вероятный результат будет получен, если мы продолжим нашу столь наивную экстраполяцию, — окажется, что мы должны достичь 9-го диапазона, а с ним и конечного предела скорости, возможной во Вселенной, к 2010 году.
Дело в том, что последняя строка таблицы совершенно фантастична; границы 9-го диапазона по-настоящему должны обозначаться так: «150 000 000–1 073 000 000 километров в час». Во Вселенной не существует скорости, превышающей последнюю цифру — величину скорости света.
Не будем заниматься вопросом, почему скорость света является пределом; сосредоточим пока наше внимание на низших диапазонах спектра скоростей. Диапазоны с 1-го по 4-й целиком перекрывают полосу скоростей, удовлетворяющую все наши земные нужды; в сущности, многие из нас вполне удовлетворены рамками 3-го диапазона — считается, например, что современные реактивные пассажирские самолеты летают с достаточно высокой скоростью.
Для сверхскоростных передвижений, порядка нескольких тысяч километров в час, потребуется применить ракеты; маловероятно, что использование химического топлива окажется экономически целесообразным. Правда, уже сейчас человек способен за девяносто минут облететь вокруг земного шара, но для этого приходится спалить около ста тонн горючего. Даже когда такие ракеты будут полностью усовершенствованы, вряд ли удастся сократить затраты горючего до уровня ниже десяти тонн на одного пассажира (примерно в двадцать раз больше, чем расходуется на одного пассажира крупным реактивным самолетом в дальних рейсах, хотя и это количество весьма внушительно — полтонны керосина). А ведь, кроме горючего, ракета должна нести еще и запас кислорода — своего рода штраф за полет вне атмосферы.