Четвертое измерение — страница 9 из 26

Его идеи являются фундаментальными для физики XX в. В частности, они заложили основы теории относительности. В 1905 г. немецкий физик Альберт Эйнштейн (1879–1955) вместе с нидерландским физиком и математиком Хендриком Лоренцем (1853–1928) и французским математиком Анри Пуанкаре (1854–1912) представил специальную теорию относительности. Вскоре после этого немецкий математик Герман Минковский (1864–1909) связал четырехмерное многообразие Римана, пространство-время, с пространственным метрическим тензором Римана, который содержал скорость света. Именно на основе этого пространства в 1916 г. была разработана общая теория относительности Эйнштейна.

* * *

БЕРНХАРД РИМАН (1826–1866)

Риман за свою короткую жизнь опубликовал всего несколько работ, зато они были исключительно высокого достоинства, так как в них он решил некоторые из наиболее сложных математических проблем. Также он ввел новые понятия и методы и кардинально изменил представление о пространстве. Он был застенчивым человеком и избегал публичных выступлений, а из-за слабого здоровья страдал частыми нервными срывами.

Детство его было скромным, что неудивительно: он был сыном пастуха, но это не помешало проявлению фантастических способностей к вычислениям и особого математического таланта. Еще в школе юный Бернхард прочитал книгу Лежандра по теории чисел, поглощая 900 страниц в неделю.

Начав учиться на факультете теологии и философии, Риман вскоре увлекся математикой, поэтому отправился изучать ее в Берлинский университет. Там он начал развивать свои идеи по теории функций комплексного переменного, написав по этой теме докторскую диссертацию под руководством Гаусса в Гёттингенском университете. В 1859 г. Риман опубликовал свою единственную работу по простым числам. Этой областью он увлекался в течение многих лет, сформулировав одну из самых известных в математике гипотез.



Карикатура на Римана авторства Херардо Басабе.


От научных кулуаров до кофейни

Красивые идеи, представленные в диссертации Римана, вскоре распространились по всем образовательным и научно-исследовательским учреждениям Европы. Многомерная дифференциальная геометрия наряду с неевклидовыми геометриями начала набирать популярность в математических и научных кругах. Исследования продолжались. В области неевклидовых геометрий строились новые модели пространств, а также предпринимались попытки сделать геометрии более последовательными, чтобы они не содержали логических противоречий. В дифференциальной геометрии здание, заложенное Риманом, продолжили строить такие известные итальянские математики, как Эудженио Бельтрами (1835–1900), Грегорио РиччиКурбастро (1853–1925) и Туллио Леви-Чивита (1873–1941), а также немецкий математик Элвин Бруно Кристоффель (1829–1900). Ученые того времени пытались применять элегантную теорию Римана, и хотя сначала это было нелегко (например, необходимо было дальнейшее развитие физики), наука XX в. показала истинное значение этой новой области геометрии.

В то же время математики и ученые начали распространять информацию о неевклидовых геометриях и геометрии Римана в академических кругах, проводя конференции, публикуя статьи в научных журналах и книгах, и мало-помалу эти идеи стали доступны широкой публике.

Одним из самых активных популяризаторов четвертого измерения был немецкий математик Герман фон Гельмгольц (1821–1894). Его статьи публиковались в Германии, Франции, Англии и США в 1860—1870-х гг.

Гельмгольц, как и некоторые из его современников, также использовал образ двумерных существ, живущих на сфере и на других поверхностях. Эти существа имеют свою собственную геометрию, отличную от евклидовой; в их геометрии, например, сумма внутренних углов треугольника не будет равна 180°. По поводу четвертого измерения Гельмгольц писал в своей работе «Популярные лекции о науке» (1881), что нам не удастся его вообразить, и приводил сравнение с человеком, который родился слепым и не может представить себе цвета.



Немецкий физик Герман фон Гельмгольц написал много работ по неевклидовой геометрии и о гипотетических многомерных мирах. Его идеи стали популярны среди широкой общественности во всем мире.


В то время как одни ученые работали над серьезными вопросами, другие решали более приземленные проблемы: как двумерные существа питаются, как устроен их кишечно-желудочный тракт, как они передвигаются, как выглядят их глаза, как устроено их зрение — эти и другие подобные вопросы, конечно, были более интересны широкой публике. В те времена выражение «четвертое измерение» стало синонимом любого многомерного пространства и понятия неевклидовой и многомерной геометрий часто отождествлялись.

Масштабы геометрической революции привели к тому, что эти вопросы стали темой наиболее важных научных и философских дискуссий конца XIX — начала XX в. Важнейшими среди них были вопросы о научной истине, связях между наукой и реальностью, о возможности существования пространств высших измерений, о структуре, функции и значении математики. Понятие пространства также подвергалось переосмыслению, и прежде всего был поставлен такой вопрос: наше пространство евклидово или неевклидово? Другими словами, какова форма нашего пространства?

Популяризация четвертого измерения также имела удивительные, даже магические аспекты, как мы увидим в четвертой главе. Оно означало существование сверхсуществ, всемогущих и вездесущих, умеющих проходить через стены и обладающих другими впечатляющими способностями. Это неизбежно привело к тому, что многомерные пространства стали вопросом религии и даже веры. Четырехмерное пространство можно рассматривать как свидетельство существования Бога или сверхъестественных существ. Например, христианские мыслители предполагали, что Бог и бессмертие могут быть связаны с нашим трехмерным миром через четвертое измерение.

Особенно широко вопросы четвертого измерения освещались в 1877 г. во время скандального судебного процесса, состоявшегося в Лондоне, о котором писала как британская, так и международная пресса. Генри Слейд, знаменитый американский медиум, предстал перед судом за мошенничество во время проведения спиритических сеансов с участием важных представителей лондонского общества. Скандал разразился, когда выдающиеся ученые всего мира, в том числе будущие лауреаты Нобелевской премии, выступили в его защиту, утверждая, что сеансы Слейда доказывают, что духи — это на самом деле существа из четвертого измерения. Несмотря на приговор, вынесенный Слейду, Иоганн Карл Фридрих Цёлльнер (1834–1882), профессор физики и астрономии Лейпцигского университета, провел серию экспериментов, чтобы продемонстрировать существование духов. Об этом мы подробнее расскажем в пятой главе. Этот скандал сделал многомерные пространства (правда, совершенно антинаучный их вариант) главной темой разговоров в Великобритании и во всем мире.



Генри Слейд был одним из самых знаменитых медиумов XIX в., и когда его спиритические сеансы были объявлены мошенническими, некоторые представители научного сообщества встали на его защиту.


Другим популярным аспектом четвертого измерения стали попытки визуализации различных четырехмерных объектов.

Одной из первых научных работ по этой проблеме была статья американского математика Вашингтона Ирвинга Стрингхема (1847–1909) «Правильные фигуры в n-мерном пространстве» (1880). В частности, попытка визуализировать гиперкуб, четырехмерный аналог трехмерного куба, стала синонимом визуализации четвертого измерения. Чарльз Хинтон, как и многие другие ученые (Пуанкаре например), посвятил этой задаче много времени, — он был убежден, что четвертое измерение можно визуализировать. Хинтон был главным представителем теории, известной как философия гиперпространства, занимающейся вопросами многомерных пространств и их взаимодействий с другими объектами.

На следующей странице приведен рисунок из названной статьи. Первые три изображения в левой части рисунка — «фасады» фигур, которые можно назвать гипертетраэдром, гиперкубом и гиперикосаэдром, — аналогов тетраэдра, куба и икосаэдра в четвертом измерении. В случае гипертетраэдра в каждой его вершине сходятся четыре тетраэдра, как и в трехмерном тетраэдре в каждой вершине сходятся три треугольника. В случае гиперкуба в каждой его вершине сходятся четыре куба таким же образом, как и в трехмерном кубе в каждой вершине сходятся три квадрата. Во втором ряду — проекции этих трех четырехмерных фигур на плоскость.

Четвертое измерение стало излюбленной темой некоторых писателей той эпохи.

После всеобщего разочарования в материализме и позитивизме многомерные пространства и неевклидовы геометрии внесли значительный вклад в развитие различных культурных феноменов.

В мире искусства это позволило кубистам отказаться от метода перспективы эпохи Возрождения, и они начали изображать объекты с разных точек зрения одновременно. Аналогично музыканты, дизайнеры, архитекторы и художники начали говорить о новом языке искусства и приближении к высшей реальности. Четвертое измерение проникло во все социальные и культурные сферы и стало обычной темой разговоров в кафе, расположившись где-то между привычными сплетнями и политическими спорами.




Рисунок из статьи «Правильные фигуры в n-мерном пространстве» Вашингтона Ирвинга Стрингхема, опубликованной в American Journal of Mathematics в 1880 г.

Глава 4. Магия четвертого измерения

Душа моя — зеркальный узел,

Завязанный водоворотом мыслей

Разума в обители незримой,

Где ты как каторжник сидишь,

Гвоздем его пытаешься распутать,

Но узел остается неизменным,

Ведь инструменты для его развязки

В четвертом измерении лежат.

Джеймс Клерк Максвелл. Парадоксальная ода (1878)


Почему вопросы четвертого измерения привлекают внимание не только ученых, но и всего общества? Возможно, всех нас манит неизвестное, таинственное — одним словом, то, что мы не можем даже вообразить. Кроме того, для некоторых людей другие измерения могут служить способом ухода от действительности, от проблем социума, в котором они жив