Вернемся к примерам умножения на 10. В предыдущих параграфах мы умножали 1,82 на 10 и получили 18,2. Обратите внимание, что умножение на 10 фактически просто сводится к тому, что мы перемещаем знак десятичной запятой на единицу вправо. Точно так же умножение на 100 сводится к перемещению знака десятичной запятой на две единицы вправо, а умножение на 1000 — соответственно на три единицы. В этом вы легко сможете убедиться самостоятельно.
Деление на 10 сводится к действию, обратному умножению, в данном случае к перемещению знака десятичной запятой на одну единицу влево, деление на 100 — на две единицы влево, а деление на 1000 — соответственно на три единицы влево.
Поскольку 1,82 : 10 согласно правилу обратных дробей равно также 1,82 × 0,1, что, в свою очередь, равно 0,182. Такой же ответ мы бы получили, если бы согласно правилу перемещения десятичной запятой передвинули запятую на один знак влево.
Поскольку умножение или деление на 10 приводит просто к сдвигу положения десятичной запятой, удобно перейти к процентам.
Давно стало привычным, что люди или организации, которые предоставляют деньги в долг, получают обратно помимо одолженной суммы определенную добавочную сумму в оплату за предоставление кредита. Эта сумма получила название «процент».
Эта сумма предоставляется в качестве компенсации за то, что кредитор остается на какое то время без своих денег, кроме того, она является компенсацией риска не получить своих денег назад. Например, частное лицо или организация могут попросить 6 долларов годовых процентов за каждые одолженные 100 долларов.
Поскольку очень часто эти «проценты» вычисляются из расчета на каждые 100 долларов (слово «процент» пришло к нам из латинского языка, где «per cent» означает «на сотню»).
Обычно при подсчете доходов, наценок и комиссионных, а также многих других параметров используют проценты.
Один процент — это фактически 1 доллар на каждые 100, то есть 1/100. Чтобы найти один процент от любого числа, нужно передвинуть положение десятичной запятой на две единицы влево. Так, 1 процент от 1350 долларов равен 13,50 доллара. Сумма, составляющая 6 процентов от 1350, должна равняться 6 × (1/100) × 1350 = 6 × 13,50, или 81,00.
Десять процентов комиссионных составляют 10/100 от исходного числа, то есть 1/10. В этом случае десятичная запятая передвигается на один знак влево. А 10 процентов комиссионных составят 135 долларов.
Иногда при подсчетах процентов возникают некоторые проблемы. Например, 1 процент комиссионных от суммы 675,37 доллара составит 6,7537 доллара. Для практических целей не нужно больше двух знаков после десятичной запятой, и остальные цифры округляются. После округления комиссионные равны 6,75. Все эти соотношения хорошо работают при десятичной денежной системе. Для старой британской денежной системы процентные исчисления не очень удобны. Не очень просто найти 10 процентов от 135 фунтов 10 шиллингов. По моим подсчетам, это 13 фунтов 11 шиллингов, попробуйте сосчитать и вы.
Десятичные дроби без конца
В десятичной системе возникает много серьезных проблем и помимо определения положения десятичного знака. Дело в том, что некоторые дроби невозможно представить в виде обычных десятичных эквивалентов.
Рассмотрим, например, 1/3. Попробуем представить ее в виде десятичной дроби. Для того чтобы вычислить соответствующую десятичную дробь, надо записать 1/3 как 1,000000000/3 и провести деление следующим образом:
Нет смысла продолжать деление дальше, вы уже убедились, что его можно продолжать бесконечно.
Десятичный эквивалент для 1/3 — это 0,3333333333… и так далее.
В качестве следующего примера возьмем дробь 1/7. Представим ее в виде 1,00000000/7 и проведем деление. (Эту операцию я полностью доверяю читателю.) Получаем следующий десятичный эквивалент:
1/7 = 0,142857142857142857142857… и так далее. Обращаю ваше внимание на то, что десятичным эквивалентом 1/7 является бесконечная периодическая десятичная дробь. Десятичный эквивалент является бесконечной дробью как в случае 1/3, так и в случае 1/7, но в случае 1/3 мы имеем бесконечное повторение цифры 3, а в случае 1/7 — бесконечное повторение последовательности цифр 142857.
Это примеры периодических десятичных дробей.
По существу, все десятичные дроби можно рассматривать как бесконечные периодические, поскольку в конце любой конечной десятичной дроби можно поставить бесконечное количество нулей и ее значение при этом не изменится. Например, десятичный эквивалент ½ равен 0,5.
Но это число можно представить в виде 0,5000000000000 с бесконечно повторяющимся нулем.
Иногда бесконечно повторяющуюся цифру в периодической десятичной дроби обозначают точкой, поставленной сверху. Так, 1/3 можно обозначить как , а у как . Если периодически повторяется группа чисел, ее заключают в скобки и точку ставят над одной из цифр этой группы. Так,
1/7 = 0,(142857).
Действительно, любую дробь можно представить в виде бесконечного десятичного эквивалента (даже если этой бесконечно повторяющейся цифрой будет 0), и, наоборот, любая бесконечная периодическая дробь может быть представлена в виде конечной недесятичной дроби, то есть в виде соотношения целых чисел.
У вас, конечно, возник вопрос: а как оперировать с бесконечными периодическими десятичными дробями при арифметических действиях. Можно, например, использовать недесятичный эквивалент, скажем, вместо 0,333333… использовать 1/3. Но при решении сложных научных и инженерных задач, как ни странно, бесконечные периодические десятичные дроби не создают никаких затруднений. Однако существуют другие сложные в обращении, но необходимые при решении серьезных проблем числа, и о них я вам расскажу в следующих главах.
Глава 6ФОРМА ЧИСЕЛ
Греческие математики занимались в основном геометрией и много времени проводили подсчитывая количество точек, расположенных на плоскости в форме различных геометрических фигур. Количество точек, которые составляют треугольник, называют треугольными числами.
Можно представить себе сверхмикроскопический треугольник, состоящий из одной точки. Три точки также образуют треугольник, у которого по две точки на каждой стороне. Шесть точек образуют уже больший треугольник, у которого по три точки на каждой стороне, а десять точек — треугольник, у которого по четыре точки на каждой стороне.
Можно записать треугольные числа в ряд: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55 и так далее. Каждое следующее треугольное число образует треугольник, у которого на каждой стороне на одну точку больше. Ряд треугольных чисел можно продолжать бесконечно.
Обратите внимание, ряд треугольных чисел образует определенную зависимость. Первое число равно 1, следующее равно 3, то есть 1+2, затем идет 6, то есть 1 + 2 + 3, затем 10, то есть 1 + 2 + 3 + 4, затем 15, то есть 1 + 2 + 3 + 4 + 5, и так далее. Запомнив эту зависимость, вы сможете продолжать ряд треугольных чисел сколь угодно долго, не составляя треугольников и не пересчитывая точки. Определить, является ли данное число треугольным или нет, можно, представив его в виде ряда, подобного приведенному выше. Если число можно представить в виде суммы чисел, где каждое следующее число на единицу больше предыдущего, а первое число является единицей, то это число — треугольное.
Любая группа чисел, которая может быть представлена в виде последовательности, подчиняющейся какому-то правилу, образует ряд.
Числа, являющиеся количеством точек, из которых можно составить квадрат, тоже можно представить в виде ряда. Как и в прошлый раз, одну точку можно рассматривать как сверхмикроскопический четырехугольник. Четыре точки также образуют четырехугольник, у которого по две точки на каждой стороне. Девять точек образуют уже больший четырехугольник, у которого по три точки на каждой стороне, а шестнадцать точек — четырехугольник, у которого по четыре точки на каждой стороне.
Можно записать четырехугольные числа в ряд: 1, 9, 16, 25, 36, 49 и так далее. Каждое следующее четырехугольное число образует четырехугольник, у которого на каждой стороне на одну точку больше. Ряд четырехугольных чисел можно продолжать бесконечно.
Проанализировав числа, составляющие ряд четырехугольных чисел, мы увидим, что они тоже подчиняются определенной зависимости. Начнем с 1. Здесь нет вариантов, единица — это просто единица. Но уже 4 = 1 + 3, далее 9 = 1 + 3 + 5, 16=1+3 + 5 + 7 и так далее.
Таким образом, каждое число является суммой последовательных нечетных чисел, первое из которых единица.
Соотношение между числами треугольного и квадратного рядов показано на диаграмме.
Соотношения в рядах треугольных и квадратных чисел
У греков был также ряд пентагональных чисел, которые представлены на рисунке. Этот ряд можно рассматривать как некий синтез треугольных и четырехугольных рядов. Если мы построим несколько пятиугольников таким же образом, как строили треугольники и четырехугольники, то получим числовой ряд вида 1, 5, 12, 22, 35, 51, 70 и так далее. Это ряд чисел, которые получают сложением чисел, отличающихся друг от друга на три. Первый член ряда — это единица. Второй — 5, то есть 1 + (1 + 3) = 1 + 4. Третий — 12, то есть 1 + 4 + (4 + 3) = 1 + 4 + 7, четвертый — 22, то есть 1 + 4 + 7 + 10, и так далее.
Греки изобрели и другие геометрические фигуры, моделирующие числовые ряды. Числа, составляющие такие последовательности, называются фигурными. Некоторые фигурные числа моделируются уже не плоскими фигурами, как треугольник и квадрат, а объемными, например кубами. Такие кубы трудно изобразить на рисунке, но если вы внимательно посмотрите на числовой ряд, вы сможете составить себе какое-то представление о кубической фигуре из точек. Серия кубических чисел — это ряд 1, 8, 27, 64, 125 и так далее.