7/9) является рациональным числом, так как √(17/9) = √16/√9 = 4/3 или 11/3 (4 — это корень квадратный из 16, а 3 — корень квадратный из 9).
Тот факт, что многие квадратные корни являются иррациональными числами, нисколько не умаляет их значения, в частности, число √2 очень часто используется в различных инженерных и научных расчетах. Это число можно вычислить с той точностью, которая необходима в каждом конкретном случае. Способ вычисления был описан ранее в этой главе, и вы можете получить это число с таким количеством знаков после запятой, на которое у вас хватит терпения.
Например, число √2 можно определить с точностью до шести десятичных знаков: √2 = 1,414214. Эта величина не очень сильно отличается от истинного значения, поскольку 1,414214 × 1,414214 = 2,000001237796. Этот ответ отличается от 2 на величину, едва превышающую одну миллионную. Поэтому значение √2, равное 1,414214, считается вполне приемлемым для решения большинства практических задач. В том случае, когда требуется большая точность, нетрудно получить столько значащих цифр после запятой, сколько необходимо в данном случае.
Однако если вы проявите редкостное упрямство и попробуете извлекать квадратный корень из числа 2 до тех пор, пока не добьетесь точного результата, вы никогда не закончите своей работы. Это бесконечный процесс. Сколько бы десятичных знаков после запятой вы ни получили, всегда останется еще несколько.
Этот факт может поразить вас так же сильно, как и превращение 1/3 в бесконечную десятичную дробь 0,333333333… и так бесконечно или превращение 1/7 в 0,142857142857142857… и так далее бесконечно. На первый взгляд может показаться, что эти бесконечные десятичные дроби и иррациональные квадратные корни — это явления одного порядка, но это совсем не так. Ведь у этих бесконечных дробей есть дробный эквивалент, в то время как у √2 такого эквивалента нет. А почему, собственно? Дело в том, что десятичным эквивалентом 1/3 и 1/7, а также бесконечного числа других дробей являются периодические бесконечные дроби.
В то же время десятичный эквивалент √2 является непериодической дробью. Это утверждение справедливо также для любого иррационального числа.
Проблема заключается в том, что любая десятичная дробь, которая является приближенным значением корня квадратного из 2, представляет собой непериодическую дробь. Как далеко мы ни продвинемся в расчетах, любая дробь, которую мы получим, будет непериодической.
Представьте себе дробь с огромным количеством непериодических цифр после запятой. Если вдруг после миллионной цифры вся последовательность десятичных знаков повторится, значит, десятичная дробь — периодическая и для нее существует эквивалент в виде отношения целых чисел. Если у дроби с огромным количеством (миллиарды или миллионы) непериодических десятичных знаков в какой-то момент появляется бесконечная серия повторяющихся цифр, например …55555555555…, это также означает, что данная дробь — периодическая и для нее существует эквивалент в виде отношения целых чисел.
Однако в случае иррациональных чисел их десятичные эквиваленты полностью непериодические и не могут превратиться в периодические.
(Разумеется, вы можете задать мне следующий вопрос: «А кто может знать и сказать наверняка, что происходит с дробью, скажем, после триллионного знака? Кто может гарантировать, что дробь не станет периодической?» Существуют способы неопровержимо доказать, что иррациональные числа являются непериодическими, но такие доказательства требуют сложного математического аппарата, поэтому мы не сможем разобрать их в нашей книжке. Но если бы вдруг оказалось, что иррациональное число становится периодической дробью, это означало бы полный крах основ математических наук. И на самом деле это вряд ли возможно.)
Теперь рассмотрим следующее выражение: (24)2. Такая запись означает, что 24 следует возвести в квадрат. Число 24 — это 2 × 2 × 2 × 2, или 16. Далее, 16 в квадрате — это 16 × 16, или 256. Таким образом, (24)2 = 256. Но 256 — это также 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2, или 28. Следовательно, (24)2 = 28.
Если вы произведете подобные действия с различными экспоненциальными выражениями, различающимися как основанием, так и показателем степени, вы сможете убедиться, что существует правило, общее для всех экспоненциальных выражений: при возведении экспоненциального числа в степень показатели степени перемножаются. Это означает, что, не производя расчетов, мы всегда можем сказать следующее: (35)2 = 310, а (78)7 = 756 и так далее.
Если это утверждение верно, то, очевидно, оно будет верно и для дробного показателя степени. Рассмотрим число (24)½.
Следуя правилу перемножения экспонент, получим (24)½ = 22. Далее, поскольку 24 = 16, а 22 = 4, то мы можем утверждать, что 161/2 = 4.
Но мы также знаем, что 4 — это квадратный корень из 16, значит, возведение числа в степень ½ равносильно извлечению из этого числа квадратного корня. Другими словами, 161/2 = √16.
Далее, следуя этому правилу, можно утверждать, что 161/3= 3√16, 161/4 = 4√16 и так далее. Теперь мы ввели в обиход дробные экспоненты, о которых я обещал вам рассказать еще в шестой главе. Обратите внимание, √2 невозможно представить в виде конечной дроби, но можно — в виде экспоненциального выражения с дробной экспонентой.
Что же означает дробная экспонента? Например, выражение 163/2 — это то же самое, что (163)1/2, поскольку 3 × 1/2 = 3/2. Следовательно, 163/2 = √163.
Или, обобщая, можно сказать, что в случае дробной экспоненты основание возводится в степень, равную числителю экспоненты, и из него извлекается корень, равный знаменателю экспоненты.
Следовательно, 2567/235 — это корень 235-й степени из 2, возведенных в 567-ю степень.
Очевидно, такие дробные экспоненты очень громоздки. А нельзя ли перейти на десятичные дроби? Ведь мы помним, что 1/2 — это 0,5, так что вместо 41/2 можно написать 40,5. Любая десятичная экспонента имеет свое значение. Например, 25,175—это 2207/40, поскольку 5,175 = 207/40. В свою очередь, число 2207/40 получается при возведении 2 в степень 207 и извлечении из полученного результата корня 40-й степени. (Можно поменять местами операции. Если мы сначала извлечем из 2 корень 40-й степени, а затем возведем этот промежуточный результат в 207-ю степень, мы получим тот же окончательный результат. Это утверждение вы легко можете проверить на более простом примере, например на выражении 43/2. Квадратный корень из 43— это √64, что равно 8. В то же время куб √4 равен 23, что также равно 8.)
Значение выражения 2207/40 (или любого другого выражения, где экспонента является целым, дробным, десятичным, положительным или отрицательным числом) может быть вычислено при помощи соответствующих математических методов. При этом вам не пришлось бы двести семь раз перемножать 2 или искать путем последовательных приближений корень сороковой степени. 2207/40 = 36,126.
Эта величина приблизительная, поскольку 2207/40 является иррациональным числом, как и большинство выражений с дробными или десятичными экспонентами. Десятичный эквивалент 2207/40 — это бесконечная непериодическая дробь, но мы всегда можем получить столько десятичных знаков после запятой, сколько требуется в соответствии с требованиями по точности конкретных вычислений.
Используя любое число в виде основания экспоненциального выражения, мы можем составить соответствующее экспоненциальное выражение для любого другого числа. Теперь мы можем вернуться к моей задаче об умножении 7 × 17, которая возникла у нас еще в шестой главе. Число 7 можно представить как 22,81, как 31,77 или как 51,21 (существуют специальные методы для вычисления экспоненциальных эквивалентов), в то же время 17 равно 24,08, 32,58 или 51,76. Теперь задачу умножения можно свести к сложению: 7 × 17 = 22,81 × 24,08 = 22,81+4,08 = 26,89, или 31,77 × 32,58 = 34,35, или 51,21 × 51,76= 52,97. Все эти числа, 26,89, 34,35, 52,97, приблизительно равны между собой и приблизительно равны 119, это и есть ответ.
Конечно, было бы гораздо проще просто перемножить 7 × 17 вместо того, чтобы находить значения экспоненциальных выражений. Кроме того, вместо точного ответа мы получим приближенный. Однако посмотрим, что будет дальше. Возможно, этот метод окажется незаменимым. Обратим внимание на основания экспоненциальных выражений. Мы выбрали 2, 3 или 5. А почему не выбрать число 10, ведь 10 — это основа нашей системы счета.
Глава 8ОЧЕНЬ БОЛЬШОЕ И ОЧЕНЬ МАЛЕНЬКОЕ
Одной из причин, заставившей ученых настойчиво вводить экспоненциальные числа в практику, явилась необходимость работать с очень большими или очень маленькими числами. Например, масса Земли равна приблизительно 6000000000000000000000000000 грамм, а масса атома водорода — 0,00000000000000000000000166 грамма.
Вы, конечно, заметили, что при такой записи нетрудно потерять один или несколько нулей. В процессе работы ученые разработали метод выражения чисел, когда часть числа является обычным числом, а часть — экспоненциальным. Основой экспоненциальной части является число 10 (в конце предыдущей главы я намекал на эту возможность).