φ – Число Бога — страница 21 из 54

Как так вышло, что количество потомков пары кроликов имеет такое важное значение для математики? Ведь задача решается довольно просто. Сначала у нас одна пара. Проходит первый месяц, первая пара порождает еще пару, их становится две.


Рис. 27


На рис. 27 пара взрослых кроликов обозначена крупной фигуркой, а пара молодых – мелкой. Проходит второй месяц, взрослая пара порождает еще одну юную пару, а молодая пара тем временем подрастает. Итак, у нас три пары, что и отображено на рисунке. Проходит третий месяц, каждая из двух взрослых пар порождает еще по паре, а юная пара подрастает, итак, у нас уже пять пар. Проходит четвертый месяц, каждая из трех взрослых пар порождает еще по паре, а две юные пары подрастают, следовательно, у нас уже восемь пар. После пяти месяцев у нас по юной паре от каждой из пяти взрослых пар плюс три подрастающие пары – всего тринадцать пар. Теперь мы уяснили закономерность и знаем, как получить число взрослых пар и юных пар и общее число пар кроликов в каждый последующий месяц. Предположим, нас интересует только число взрослых пар в каждый конкретный месяц. Это число состоит из числа взрослых пар в предыдущий месяц плюс количество юных пар (к данному моменту успевших повзрослеть) в тот же предыдущий месяц. Однако количество юных пар месяц назад на самом деле равен количеству взрослых пар в позапрошлом месяце. Итак, в каждый конкретный месяц, начиная с третьего, количество взрослых пар просто-напросто равно сумме количества взрослых пар за два предшествующих месяца. Итак, количество взрослых пар подчиняется последовательности 1, 1, 2, 3, 5, 8… Из рисунка очевидно, что количество юных пар подчиняется в точности той же последовательности со сдвигом на один месяц. То есть количество юных пар равно 0, 1, 1, 2, 3, 5, 8… Естественно, общее количество пар – сумма этих последовательностей, и оно совпадает с последовательностью для количества взрослых пар без числа за первый месяц (1, 2, 3, 5, 8…). Последовательность 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…, в которой каждое число, начиная с третьего, представляет собой сумму двух предыдущих чисел, в девятнадцатом веке получила название «Числа Фибоначчи»; придумал этот термин французский математик Эдуард Люка (1842–1891). Последовательности чисел, в которых отношение между соседними членами выражаются математической формулой, называются рекурсивными. Числа Фибоначчи – первая известная в Европе рекурсивная последовательность. Общее свойство рис. 27 таково, что каждый член последовательности равен сумме двух предыдущих членов, и математически это выражается следующим образом (формулу предложил в 1654 году математик Альбер Жирар): Fn+2 = Fn+1 + Fn. Здесь n – это номер члена последовательности (например, F5 – это пятый член последовательности), Fn+1 – это следующий за ним член последовательности (то есть если n = 5, то n + 1 = 6), а Fn+2 – это член последовательности, следующий за Fn+1.

Фибоначчи так знаменит в наши дни, поскольку применение чисел Фибоначчи отнюдь не сводится к разведению кроликов. Кстати, название этого раздела подсказала цитата из «Естественной истории интеллекта» Ральфа Уолдо Эмерсона, вышедшей в свет в 1893 году. Эмерсон говорит: «Все помыслы черепахи – лишь о черепахах, а кролика – о кроликах». С последовательностью Фибоначчи мы еще встретимся при изучении поразительно разнообразных явлений, на первый взгляд никак не связанных друг с другом.

Для начала рассмотрим явление, пожалуй, предельно далекое от генеалогии кроликов – оптику, науку о том, как распространяются лучи света. Предположим, у нас есть две стеклянные пластины, сделанные из стекла разного сорта (с разными показателями преломления света или «индексами рефракции»), и мы поставили их вплотную друг к другу (как на рис. 28, а). Если мы посветим сквозь пластины, лучи света в принципе могут отразиться внутри от четырех отражающих поверхностей и лишь затем выйти наружу (рис. 28, а). А точнее, они могут либо пройти сквозь стекло, вообще не отразившись, либо, прежде чем выйти наружу, отразиться внутри конструкции один, два, три и т. д. раз – потенциально число отражений может быть и бесконечным. Законы оптики допускают все варианты развития событий. Если внутренних отражений вообще не было, на выходе будет только один луч (рис. 28, b). Если рассмотреть все варианты, при которых лучи претерпевают ровно одно внутреннее отражение (рис. 28, с), на выходе будет два луча, поскольку тогда лучи могут пройти двумя путями. При рассмотрении всех вариантов, когда внутренних отражений будет два, на выходе будет три луча (рис. 28, d), пять лучей – для трех внутренних отражений (рис. 28, е), восемь – если луч отразится четырежды (рис. 28, f), тринадцать – для пяти отражений (рис. 28, g) и т. д. Количество лучей на выходе – 1, 2, 3, 5, 8, 13 … – это последовательность Фибоначчи.


Рис. 28


А теперь рассмотрим еще одну задачу, совершенно иную. Ребенок взбирается по лестнице. Максимальное количество ступеней, которые он может одолеть за раз, – две; то есть он может за один шаг подняться либо на одну, либо на две ступени. Всего ступеней n. Сколькими способами Сn ребенок может подняться по лестнице? Если ступеней только одна, то есть n = 1, очевидно, способ только один: С1 = 1. Если ступеней две, ребенок может либо подняться сразу на две ступеньки, либо преодолеть их по одной, то есть способов два: С2 = 2. Если ступеней три, способов подняться три: 1 + 1 +1, 1 + 2, 2 + 1, следовательно, С3 = 3. Если ступеней четыре, количество способов возрастает до С4 = 5: 1 + 1 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 2 + l + l, 2 + 2. Для пяти ступеней способов уже С5= 8: l + 1 + l + l + l, 1 + 1 + 1 + 2, 1 + 1 + 2 + 1, 1 + 2 + 1 + 1, 2 + 1 + 1 + 1, 2 + 2 + 1, 2 + 1 + 2, 1 + 2 + 2. Оказывается, количество вариантов l, 2, 3, 5, 8 … снова составляет последовательность Фибоначчи.

Наконец, исследуем генеалогическое древо самца пчелы – трутня. В трутней превращаются неоплодотворенные яйца пчел-работниц. То есть у трутня нет отца, только мать. С другой стороны, яйца пчелы-царицы оплодотворяются трутнями, и из них получаются самки (рабочие пчелы или царицы). То есть у рабочей пчелы есть и мать, и отец. Итак, у одного трутня есть один родитель, мать, одна пара бабушек и дедушек – родители матери, двое прабабушек и прадедушка, всего трое (мать и отец бабушки и мать дедушки), пять прапрабабушек и прапрадедушек (двое на каждую прабабушку и мать прадедушки) и т. д. То есть число ветвей на генеалогическом древе трутня составляет 1, 1, 2, 3, 5 – снова последовательность Фибоначчи. Схему такого генеалогического древа см. на рис. 29.


Рис. 29


Все это очень занимательно: одна и та же последовательность чисел относится и к кроликам, и к оптике, и к ступенькам лестницы, и к предкам трутня; но какое отношение числа Фибоначчи имеют к золотому сечению?

Золотые числа Фибоначчи

Снова рассмотрим последовательность Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 – и на сей раз посмотрим на отношения последовательных членов этого ряда (вычислять будем до шестого знака после запятой):


1/1 = 1,000000

2/1 = 2,000000

3/2 = 1,500000

5/3 = 1,666666

8/5 = 1,6000001

3/8 = 1,625000

21/13 = 1,615385

34/21 = 1,619048

55/34 = 1,617647

89/55 = 1,6180561

44/89 = 1,617978

233/144 = 1,618056

377/233 = 1,618026

610/377 = 1,618037

987/610 = 1,618033


Узнаете это число? Чем дальше мы продвинемся по последовательности Фибоначчи, тем ближе отношение двух соседних чисел Фибоначчи будет колебаться (то чуть больше, то чуть меньше) вокруг золотого сечения, неуклонно приближаясь к нему. Если обозначить n-ный член последовательности Фибоначчи как Fn, а следующий за ним – как Fn+1, то суть нашего открытия состоит в том, что чем больше n, тем ближе отношение Fn/Fn+1 к числу φ. Это свойство чисел Фибоначчи открыл в 1611 году знаменитый немецкий астроном Иоганн Кеплер (а возможно, его опередил неизвестный итальянский математик), однако прошло более ста лет, прежде чем связь между числами Фибоначчи и золотым сечением была доказана, да и то не до конца, шотландским математиком Робертом Симсоном (1687–1768). Кстати, Кеплер, очевидно, открыл последовательность Фибоначчи совершенно самостоятельно, а не из «Книги абака».

Но почему члены последовательности, выведенной из схемы разведения кроликов, подводят нас к соотношению, выведенному из деления отрезка? Чтобы понять эту связь, придется вернуться к поразительной непрерывной дроби, с которой мы познакомились в главе 4. Вспомним, что мы обнаружили, что золотое сечение можно записать в виде:



В принципе, можно вычислить значение φ методом последовательных приближений: прерывая непрерывную дробь все ниже и ниже. Предположим, мы именно так и поступим. Тогда у нас получится целый ряд значений (напомню: 1 к a/b – это все равно, что b/a).





Иными словами, последовательные приближения, при помощи которых мы ищем золотое сечение, в точности равны соотношениям чисел Фибоначчи. Ничего удивительного, что чем дальше мы продвигаемся по последовательности, тем ближе они сходятся к золотому сечению. Это качество прекрасно описано в книге «О росте и форме» знаменитого натуралиста сэра Д’Арси Уэнтворта Томпсона (1860–1948) (Sir DArcy Wentworth Thompson. On Growth and Form). Вот как он пишет о числах Фибоначчи: «Один мой друг, сведущий в математике, пишет мне б этих прославленных, поразительных числах: “Вся романтика непрерывных дробей, линейных рекурретнтых последовательностей… все это есть в них, и они – источник бесконечного интереса; как увлекательно наблюдать, с каким рвением они стремятся достичь недостижимого – например, золотого сечения; а ведь это всего лишь одно из сотен подобных соотношений”». Кстати, сходимость золотого сечения объясняет математический фокус, который я показал вам в главе 4. Если определить последовательность чисел так, что каждый член последовательности (начиная с третьего) равен сумме двух предшествующих, то с каких бы двух чисел вы ни начали, если зайти по последовательности достаточно далеко, отношение двух последовательных членов будет приближаться к золотому сечению.

Числа Фибоначчи, подобно «предмету устремлений» их отношений – золотому сечению, – обладают поистине поразительными свойствами. Перечень математических закономерностей, связанных с числами Фибоначчи, буквально бесконечен. Приведу лишь несколько из них.

«Квадрат из прямоугольников»

Если составить сумму нечетного числа произведений последовательных чисел Фибоначчи, например, три произведения 1 × 1 + 1 × 2 + 2 × 3, эта сумма (в нашем случае 1 + 2 + 6 = 9) равна квадрату последнего числа Фибоначчи, которое вы задействовали в произведениях (в нашем случае 32 = 9). Другой пример: возьмем сумму семи произведений 1 × 1 + 1 × 2 + 2 × 3 + 3 × 5 + 5 × 8 + 8 × 13 + 13 × 21 = 441, и эта сумма будет равна квадрату последнего задействованного числа: 441 = 212. Подобным же образом сумма одиннадцати произведений 1 × 1 + 1 × 2 + 2 × 3 + 3 × 5 + 5 × 8 + 8 × 13 + 13 × 21 + 21 × 34 + 34 × 55 + +55 × 89 + 89 × 144 = 1442. Это качество прекрасно видно из чертежа на рис. 30. Любое нечетное число прямоугольников, стороны которых равны последовательным числам Фибоначчи, прекрасно складывается в квадрат. На нашем чертеже таких прямоугольников семь.


Рис. 30

Греховное число одиннадцать

В драме «Пикколомини» немецкого поэта и драматурга Фридриха Шиллера астролог Сени заявляет: «Одиннадцать – число греховное. Оно зашло за десять – число господних заповедей» («Elf ist die Sünde. Elfe Überschreiten die zehn Gebote») (Пер. Н. Славятинского). Это еще средневековое суеверие. С другой стороны, у чисел Фибоначчи есть свойство, связанное с числом 11, которое отнюдь не грешно, а, наоборот, очень красиво.

Вычислим сумму первых десяти чисел Фибоначчи: 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143. Эта сумма нацело делится на 11 (143/11 = 13). То же самое верно для суммы любых десяти последовательных чисел Фибоначчи. Например, 55 + 89 + 144 + 233 + 377 + 610 + 987 + 1597 + 2584 + 4181 = 10 857, а 10 857 нацело делится на 11: 10 857/11 = 987. Внимательно поглядев на эти примеры, можно заметить еще кое-что. Сумма любых десяти последовательных чисел Фибоначчи всегда равна седьмому из этих чисел, умноженному на 11. Можете воспользоваться этим свойством, чтобы поражать зрителей скоростью, с которой вы сложите любые десять последовательных чисел Фибоначчи.

Месть шестидесятеричной системы?!

Как вы, должно быть, помните, древние вавилоняне по не вполне понятным причинам взяли за основание своей системы счисления число 60 (шестидесятеричная система). Число 60 играет свою роль и в последовательности Фибоначчи, хотя с вавилонской системой счисления это и не связано.

Числа Фибоначчи очень быстро возрастают, поскольку каждое следующее число получается сложением двух предыдущих. По сути дела, нам крупно повезло, что кролики не бессмертны, иначе они бы нас одолели. Пятое число Фибоначчи – всего-навсего 5, а 125-е – уже 59 425 114 757 512 643 212 875 125. Интересно, что число единиц повторяется периодически – через каждые 60 чисел. Например, второе число – 1, 62-е – 4 052 739 537 881 (тоже кончается на 1), 122-е – 14 028 366 653 498 915 298 923 761 – тоже кончается на 1, как и 182 и т. д. Подобным же образом 14-е число равно 377, 74-е – на 60 чисел дальше в последовательности – равно 1 304 969 544 928 657 и тоже кончается на 7 и т. д. Это свойство обнаружил в 1774 году французский математик, итальянец по рождению, Жозеф Луи Лагранж (1736–1813), из-под чьего пера вышло много трудов по теории чисел и механике (еще он изучал устойчивость солнечной системы). Последние две цифры, то есть 01, 01, 02, 03, 05, 08, 13, 21…, повторяются в последовательности с периодичностью 300, а последние три цифры – с периодичностью 1500 чисел. В 1963 году Стивен П. Геллер при помощи компьютера IBM 1620 доказал, что последние четыре цифры повторяются с периодичностью раз в 15 000, последние пять – с периодичностью раз в 150 000 и, наконец, повторение последних шести цифр появляется раз в 1 500 000; компьютеру потребовалось на поиск этой закономерности три часа работы. Геллер не задумался над тем фактом, что можно доказать общую теорему о периодичности последних цифр, и отметил: «Похоже, догадаться, каков будет следующий период, невозможно, однако, вероятно, можно написать новую программу для машины, которая допускает инициализацию в любом месте последовательности, и это сократит время работы компьютера настолько, чтобы получить новые данные». Однако вскоре после этого израильский математик Дов Ярден показал, что можно строго доказать, что для любого количества последних цифр, начиная с трех и больше, периодичность равна всего-навсего пятнадцать на десять в степени на единицу меньше, чем количество цифр (то есть для семи цифр это 15 × 106 – то есть 15 миллионов).

Почему именно 1/89?

Свойства нашей Вселенной, от размера атомов до размера галактик, определяются величинами нескольких так называемых фундаментальных постоянных. В число этих постоянных входят четыре величины, определяющие величину четырех основных сил – силы тяготения, электромагнитной силы и двух сил, действующих на масштабах атомного ядра. Например, знакомая нам электромагнитная сила, возникающая между двумя электронами, в физике выражается через фундаментальную постоянную, называемую постоянной тонкой структуры. Величина этой постоянной почти точно равна 1/137, что весьма озадачивало несколько поколений физиков. Знаменитый английский физик Поль Дирак (1902–1984), один из основателей квантовой механики, шутил по этому поводу, что если на небесах ему будет позволено задать Господу всего один вопрос, это будет вопрос «Почему именно 1/137?».

В последовательность Фибоначчи тоже входит совершенно удивительное число – это ее одиннадцатый член 89. Если записать значение 1/89 в виде десятичной дроби, то получится 0,01123595… А теперь представим себе, что мы записываем числа Фибоначчи как десятичные дроби следующим образом:


0,01

0,001

0,0002

0,00003

0,000005

0,0000008

0,00000013

0,000000021

Иначе говоря, разряд единиц первого числа Фибоначчи приходится на второй знак после запятой, разряд единиц второго числа приходится на третий знак после запятой и так далее, то есть разряд единиц n-ного числа Фибоначчи приходится на (n–1) – й знак после запятой. А теперь давайте сложим эти числа. И получится у нас 0,01123595…, то есть 1/89.

Фокус с молниеносным сложением

Некоторые люди умеют очень быстро складывать в уме. Числа Фибоначчи помогают производить подобные молниеносные математические операции без особых усилий. Сумма всех чисел Фибоначчи от первого до n-ного равна попросту числу номер (n + 2), из которого вычли единицу. Например, сумма первых десяти членов последовательности 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143, то есть двенадцатый член (144) минус 1. Сумма первых 78 членов последовательности равна восьмидесятому члену минус 1 и т. д. Следовательно, можете заставить приятеля написать длинную колонку цифр, начиная с 1, 1, 2 и далее, следуя формуле последовательности Фибоначчи, то есть каждое следующее число должно быть суммой двух предшествующих. Затем попросите собеседника пометить галочкой любое число в колонке – после чего вы мгновенно скажете, чему равна сумма всех чисел до галочки: это будет число через одно от отмеченного минус 1.

Пифагоровы Фибоначчи

Как ни странно, числа Фибоначчи можно связать даже с пифагоровыми тройками. Как вы, наверное, помните, пифагоровы тройки – это тройки чисел, которые могут служить длинами сторон прямоугольного треугольника (в частности, это числа 3, 4, 5). Возьмите любые четыре последовательных числа Фибонанччи, ну, скажем, 1, 2, 3, 5. Произведение внешних – то есть первого и четвертого – равно 5, удвоенное произведение внутренних – то есть второго и третьего – равно 12, сумма квадратов внутренних чисел 22 + 32 = 13 – и это и будут три стороны пифагорейского треугольника (52 + 122 = 132). Но это еще не все! Обратите внимание, что третье число – 13 – само по себе число Фибоначчи! Это свойство обнаружил математик Чарльз Райн.

Учитывая, сколько чудес таят в себе числа Фибоначчи (а вскоре мы познакомимся со множеством других их секретов), не стоит удивляться, что математики давно ищут эффективный метод вычисления произвольного члена последовательности Fn для любого n. В принципе это не так уж сложно: если нам нужно сотое число, надо сложить девяносто восьмое и девяносто девятое, однако это все равно означает, что сначала надо вычислить все члены последовательности до девяносто девятого, а это несколько утомительно. Как писал покойный юморист Джордж Бернс в своей книге «Как прожить сто лет и больше» (George Burns. How to Live to Be 100 or More): «Как прожить сто лет и больше? Кое над чем придется потрудиться. Главное – обязательно дотянуть до девяносто девяти».

В середине XIX века французский математик Жак-Филипп-Мари Бине (1786–1856) заново открыл формулу, которую, по всей видимости, еще в XVIII веке знали и самый плодовитый математик в истории человечества Леонард Эйлер (1707–1783), и французский математик Абрахам де Муавр (1667–1754). По этой формуле можно найти значение любого числа Фибоначчи Fn, если известно его место в последовательности – n. Так вот, эта формула Бине целиком опирается на золотое сечение.



На первый взгляд это не формула, а сущий кошмар: не очевидно даже, что при подстановке в нее различных значений n получатся целые числа, а ведь все члены последовательности Фибоначчи – целые. Поскольку мы уже знаем, что числа Фибоначчи тесно связаны с золотым сечением, нас, пожалуй, несколько обнадежит, когда мы поймем, что первый член в скобках – это, в сущности, золотое сечение в степени n, φn, а второй – (–1/φ) n. (Вспомним, что выше мы обсуждали, что отрицательный корень квадратного уравнения, определяющего число φ, равен – 1/φ). Вооружившись простым инженерным карманным калькулятором, можно самостоятельно ввести несколько значений n и убедиться, что формула Бине дает числа Фибоначчи в точности. При достаточно больших значениях n второй член в скобках становится очень маленьким, так что можно просто считать, что Fn – это ближайшее целое число к φn/√5. Например, при n = 10, φn/√5 = 55,0036, а десятое число Фибоначчи и есть 55.

Можно задаться вопросом – так, забавы ради, – существует ли число Фибоначчи, состоящее ровно из 666 цифр. Математик и писатель Клиффорд А. Пиковер называет числа, связанные с 666, «апокалиптическими». Он обнаружил, что число Фибоначчи номер 3184 состоит из 666 знаков.

Итак, стоило лишь открыть числа Фибоначчи, и они, как по волшебству, стали возникать тот тут, то там, в том числе и в живой природе. Вот и ботаника дарит нам несколько интереснейших примеров.

Так подсолнух глядит на закат божества