φ – Число Бога — страница 5 из 54

ались инки, она называлась «кипу») или просто на пальцах, – в какой-то момент в истории человечеству пришлось решать задачу, как передавать большие числа и манипулировать ими. Символические системы, у которых для каждого числа было свое название или свой обозначающий предмет, были обречены на вымирание по сугубо практическим причинам. Нужно было разработать и принять минимальный набор символов, при помощи которых можно было охарактеризовать любое число – точно так же, как буквы в алфавите в некотором смысле можно назвать минимальным набором символов, при помощи которых можно выразить весь наш лексикон, все письменные знания. Эта необходимость подвела нас к концепции основания системы счисления – идее, что числа можно организовывать иерархически, в соответствии с определенными порядками. Наша система счисления основана на 10, и мы в повседневной жизни настолько к этому привыкли, что нам трудно представить себе, как можно выбрать другое основание.

Почему у нас именно десятичная система счисления, объясняется довольно просто – что вовсе не означает, что на ее развитие не понадобилось много времени. Мы группируем состав числа таким образом, что десять единиц на каждом иерархическом уровне составляют одну единицу уровнем выше. То есть 10 раз по единице – это 1 десяток, 10 десятков составляют 1 сотню, 10 сотен – 1 тысячу и т. д. Собственно имена числительные и расположение цифр также отражают иерархическую группировку. Когда мы записываем, например, число 555, то повторяем одну и ту же цифру три раза, однако каждый раз ее значение меняется. Первая цифра справа обозначает 5 единиц, вторая – 5 десятков или 5 раз по 10, третья – 5 сотен, то есть 5 раз по 10 десятков (или 5×102). Это важнейшее правило позиции, позиционную нумерацию, придумали вавилоняне (их система счисления имела основание 60, то есть была шестидесятеричной, о чем мы поговорим чуть дальше) примерно во втором тысячелетии до н. э., а затем в течение примерно 2500 лет ее независимо открыли китайцы, майя в Центральной Америке и индийцы.

Из всех индоевропейских языков самые ранние дошедшие до нас тексты написаны на санскрите – языке, зародившемся на севере Индии. В частности, четыре древних священных писания индуизма, в названии которых есть санскритское слово «веда» – «знание» – датируются V в. до н. э. Все числа от 1 до 10 на санскрите называются разными, неродственными словами: эка, два, три, чатвар, панча, шаш, сапта, ашта, нава, даша. Все числа от 11 до 19 представляют собой просто сочетание количества единиц и слова «десять». То есть 15 – это «панча-даша», 19 – «нава-даша» и т. д. Подобные числительные имеются, скажем, в английском, где все числа от 13 до 19 кончаются на – teen. Если вам вдруг станет интересно, откуда в английском языке взялись «eleven» и «twelve» («одиннадцать» и «двенадцать»), поясню: «eleven» произошло от «an» («один») и «lif» («осталось» или «остаток», то есть «один остался»), а «twelve» – от «two» («два») и «lif» (то есть «два осталось»). То есть эти числительные означают, что после десяти осталось еще один или два. Названия десятков в английском и санскрите также образуются одинаково – при помощи числа и слова «десять» во множественном числе («twenty», «thirty» и пр.): скажем, 60 на санскрите – «шашти»; более того, все индоевропейские языки образуют числительные очень похожими способами. Так что все, кто говорит на этих языках, очевидно, усвоили одну и ту же систему счисления – десятичную.

Почти не приходится сомневаться, что практически всемирная популярность десятичной системы счисления объясняется всего-навсего тем обстоятельством, что у нас десять пальцев – так уж захотела природа. Гипотезу эту впервые выдвинул греческий философ Аристотель (384–322 до н. э.), когда в своем сочинении «Проблемы» задался вопросом: «Почему все люди, и варвары, и греки, считают до десяти, а не до какого-нибудь другого числа?» На самом деле основание 10 ничем не лучше, скажем, основания 13. Можно даже теоретически поспорить, что раз 13 – простое число, то есть делится только само на себя и на единицу, в качестве основания системы счисления оно даже удачнее 10, поскольку в такой системе счисления большинство дробей окажутся несократимыми. Например, в десятичной системе счисления число 36/100 можно записать также как 18/50 или 9/25, в системе счисления вроде тринадцатеричной подобная неоднозначность записи исключена. Однако десятичная система одержала верх, потому что у каждого человека перед глазами было десять пальцев, и пользоваться ими было просто. В некоторых малайско-полинезийских языках слово «ладонь» – «лима» – означает и «пять». Означает ли это, что десятичную систему счисления приняли все известные цивилизации? Нет.

Среди прочих оснований систем счисления, которые применяли некоторые народы по всему миру, самым популярным оказалось 20 (двадцатеричная система счисления). В этой системе, которая когда-то была распространена на больших территориях Западной Европы, разряды формируются не на основе 10, а на основе 20. Очевидно, что для расширения базы к пальцам на руках присовокупили и пальцы на ногах. Например, у эскимосов «двадцать» обозначается выражением «теперь человек цельный». Во многих современных языках следы двадцатеричной системы счисления еще сохраняются. Например, по-французски «восемьдесят» будет «quatre-vingts» («четыре двадцатки») и когда-то существовала и архаическая форма «six-vingts» («шесть двадцаток»). А еще более яркий пример – название больницы в Париже, основанной в XIII веке: она до сих пор называется «LÔpital de Quinze-Vingts» – «Больница пятнадцати двадцаток» – поскольку первоначально была рассчитана на 300 коек для слепых ветеранов. Подобным же образом по-ирландски «сорок» – «daichead» от «da fiche» («дважды двадцать»), по-датски слова «шестьдесят» и «восемьдесят» («tresindstyve» и «firsindstyve» соответственно, сокращенно «tres» и «firs») буквально означают «три двадцатки» и «четыре двадцатки».

Однако самая удивительная система счисления в древности, а может быть, и за всю историю человечества – это шестидесятеричная система. Этой системой пользовались шумеры, жители Междуречья, и хотя корнями она восходит к четвертому тысячелетию до н. э., следы ее заметны и в наши дни: мы измеряем время в часах, минутах и секундах и делим окружность на 360 градусов (60 × 6), а каждый градус подразделяем на минуты и секунды. Шестьдесят как основание системы счисления требует отличной памяти, поскольку подобная система, в принципе, предполагает индивидуальные названия и символы для всех чисел от 1 до 60. Шумеры понимали, что это трудно, и прибегли к некоторой уловке, чтобы числа было легче запоминать: ввели 10 как промежуточную ступень. Введение 10 позволило им ограничиться отдельными словами только для чисел от 1 до 10, а десятки от 10 до 60 передавались словосочетаниями. Скажем, шумерское слово «сорок» – «нимин» – это сочетание слова «двадцать», «ниш», и слова «два», «мин». Число 555 в шестнадцатеричной системе счисления, то есть 5 × (60)2 + 5 × (60) + 5, в нашей, десятеричной системе счисления будет означать 18 305.

По поводу того, какая логика обстоятельств вынудила шумерцев выбрать столь необычное основание для своей системы счисления, выстроено много гипотез. Некоторые из них опираются на особые математические свойства числа 60: это первое число, которое делится на 1, 2, 3, 4, 5 и 6. Другие гипотезы пытаются связать 60, например, с количеством месяцев и дней в году (округлив число дней до 360) в каком-то сочетании с числами 5 и 6. Совсем недавно учитель математики и писатель из Франции Жорж Ифра в своей замечательной книге «Всеобщая история чисел» (Georges Ifrah. A Universal History of Numbers) заметил, что выбор числа 60 мог быть следствием смешения двух народов-иммигрантов, один из которых пользовался пятеричной, а другой – двенадцатеричной системой счисления. Очевидно, что основание 5 происходит от количества пальцев на одной руке, и следы подобной системы еще видны в некоторых языках, например, у кхмеров, жителей Камбоджи, а еще заметнее – в мертвом языке саравека, на котором говорил южно-американский народ сараве. Основание 12, множество следов которого заметны даже в современных языках и культурах – возьмем хотя бы британскую систему мер и весов – вероятно, происходит от количества фаланг на четырех пальцах (без большого пальца, потому что именно им производился подсчет).

Иногда в самых разных местах попадаются и экзотические системы счисления. В «Алисе в Стране Чудес» Льюиса Кэрролла Алиса, чтобы удостовериться, что она понимает, в каких странных обстоятельствах очутилась, говорит: «А ну-ка, проверю, помню я то, что знала, или нет. Значит так: четырежды пять – двенадцать, четырежды шесть – тринадцать, четырежды семь… Так я до двадцати никогда не дойду!» (Пер. Н. Демуровой). Знаменитый писатель-популяризатор математики Мартин Гарднер в своих комментариях к книге Кэрролла приводит остроумное объяснение такой необычной таблицы умножения, к которой прибегла Алиса, почерпнутое из книги А. Л. Тейлора «Белый рыцарь» (AL. Taylor. The White Knight. L., 1952): «Для системы счисления, использующей как основание 18 (“восемнадцатеричная”), 4 × 5 действительно равняется 12. В системе счисления с основанием 21 справедливо равенство 4 × 6 = 13. Если продолжить эту прогрессию, каждый раз увеличивая основание на 3, то произведения будут увеличиваться на единицу, пока мы не дойдем до 20. Здесь впервые наш метод откажет: 4 × 13 равняется не 20 (для системы чисел с основанием 42), а “1”, за которой будет следовать символ, играющий роль “10”» (Пер. Н. Демуровой). Эта гипотеза, несомненно, подкрепляется тем фактом, что Чарльз Доджсон, избравший себе псевдоним Льюис Кэрролл, был математиком и читал лекции в Оксфорде.

Наши числа – наши боги

Какие бы системы счисления, с какими бы основаниями ни применяли древние цивилизации, прежде всего, они понимали и усваивали множество целых (натуральных) чисел. Это прекрасно нам знакомые 1, 2, 3, 4… Когда люди сумели осознать, что эти числа – абстрактные понятия, им было уже несложно начать приписывать числам особые качества. По всему миру, от Греции до Индии, числа наделялись тайной властью. В некоторых древнеиндийских текстах утверждается, что числа практически божественны, обладают «природой Брамы». В этих манускриптах содержатся выражения, очень похожие на обожествление чисел, например, «слава единице». Подобным же образом знаменитый афоризм греческого математика Пифагора, о жизни и деятельности которого мы еще поговорим в ближайшем же будущем, гласит: «Все есть число». С одной стороны, подобная восторженность привела к значительному прогрессу в теории чисел, однако с другой – породила нумерологию, набор догм, согласно которым жизнь Вселенной во всех своих аспектах связана с числами и их индивидуальными свойствами. Для нумеролога числа – основа бытия, а их символические значения связаны с отношениями между небесами и деятельностью человека. Более того, если в священных писаниях упоминается то или иное число, это не может быть просто так, в любом числе есть потаенный смысл. Иногда нумерологические поветрия зат