Число, пришедшее с холода. Когда математика становится приключением — страница extra из 35

Комментарии

1

Такое же предложение относительно членения года сделали депутаты Национального конвента Франции после революции 1789 г.: с 22 ноября 1792 г. было решено ввести во Франции новый календарь. Год разделили на двенадцать месяцев, каждый из которых состоял из трех декад по десять дней. В конце года, приуроченном к началу осени (после сбора урожая), к нему добавляли пять, а один раз в четыре года — шесть дней, носивших прекрасные поэтические названия: Jour de la Vertu (День добродетели), Jour de Génie (День таланта), Jour de Travail (День труда), Jour de l’Opinion (День мнений), Jour de Récompenses (День наград), и шестым дополнительным днем каждые четыре года становился Jour de la Révolution (День революции). Названия месяцев отличались неменьшей красотой и поэтичностью и, кроме того, отражали особенности времен года, к которым они относились. Осенние месяцы – Vendémiaire (вандемьер) напоминал о сборе винограда; Brumaire(брюмер) от французского слова brume — туман; Frimaire (фример) от французского слова frimas — изморозь; зимние месяцы – Nivôse (нивоз), то есть снежный; Pluviôse (плювиоз), то есть дождливый; Ventôse (вантоз), то есть ветреный; весенние месяцы – Germinal (жерминаль), название происходит от латинского слова germen, росток; Floréal (флореаль), название происходит от латинского слова flos,цветок; Prairial (прериаль), название происходит от латинского слова pratum, луг; летние месяцы – Messidor (мессидор), название происходит от латинского слова messis, жатва; Thermidor (термидор), происходит от греческого слова θέρμη, жар; и Fructidor (фрюктидор), название происходит от латинского слова fructus, плод. Несмотря на такие красивые названия, календарь в народе не прижился. Помимо всего прочего, выходным считался каждый десятый день, а не каждый седьмой, как в еврейском или христианском календаре. В 1806 г. Франция по декрету Наполеона официально вернулась к христианскому календарю.

2

Мы до сих пор точно не знаем, как римские мастера счета выполняли подобные вычисления. Ученые сходятся, однако, в том, что римляне применяли прием, известный уже египетским ученым. Мы покажем, как действовал этот прием, на примере умножения обоих чисел: LVII и LXXV. Для начала напишем эти числа рядом:


После этого под первым числом выписывают его половину, под половиной — ее половину, потом еще половину, и так до тех пор, пока не доходят до единицы, то есть до числа I. Если же делить пополам приходится нечетное число, то берут половину четного числа, на единицу меньшую делимого.

Подробно покажем этот процесс на примере LVII: сначала напишем это число более детально XXXXX V II, потом еще подробнее XXXX VVV II и, наконец, представим его в следующем виде: XXXX VV IIIIIII. Теперь мы легко можем разделить число пополам: XX V III. Собственно, делить надо было семь единиц, но мы разделили надвое лишь шесть единиц, а седьмую просто отбросили. Поэтому таблица будет выглядеть так:



Для того чтобы вычислить половину XXVIII, запишем это число как XX IIIIIIII. Деля надвое обе части, получаем X IIII. Теперь наша таблица приобретает следующий вид:



Поскольку XIIII можно представить в виде VV IIII, постольку половину этого числа можно записать в виде V II. Остальные половинки рассчитываются очень быстро. Вместо IIIIIII пополам делят на единицу меньшее четное число IIIIII, и получают III, а вместо III делят пополам на единицу меньшее четное число II. Теперь вся таблица выглядит так:



Теперь запишем под правым числом LXXV его удвоенное значение, затем удвоенное значение удвоенного значения и так далее. Итак, удвоим первое число LXXV. Получится следующая запись: LL XXXX VV, или C XXXX X, или, упрощая, CL. Удвоив CL, мы получим CC LL, или, упрощая запись, CCC. Теперь, после внесения данных первых двух удвоений в таблицу, она приобретает следующий вид:



Теперь для того, чтобы выполнить столько же удвоений, сколько было делений пополам, надо выполнить еще три удвоения: из CCC получается CCCCCC, что можно упрощенно записать так: DC. Из DC при удвоении получается DD CC, что можно упрощенно записать так: MCC, а из MCC при удвоении получается MMCCCC:



Теперь можно считать, что главная часть умножения выполнена. Осталось сделать два шага для получения окончательного результата. Согласно таинственным воззрениям древнеегипетских ученых, нечетные числа считались «добрыми», а четные — «злыми». Если в левом столбце обнаруживается четное, то есть «злое» число, то всю строчку вычеркивают, чтобы в левом столбце остались только «добрые» нечетные числа:



«Злыми» числами считаются XXVIII (то есть 28) и XIIII (то есть 14), а все остальные числа левого столбца нечетные, то есть «добрые». На последнем шаге складывают все оставшиеся незачеркнутыми числа правого столбца, то есть находящиеся в «добрых» строчках. После упорядочивания символов мы получаем следующий результат:



После первого упрощения получаем MMM DD CC L XX V, что при окончательном упрощении дает MMMMCCLXXV. Пользуясь современной десятичной системой, мы записываем это число как 4275, и это действительно произведение двух чисел 57 и 75.

3

Иногда люди думают, что математика отличается от прочих наук тем, что в ней все результаты можно вычислять с достоверной точностью. Однако это ни в коем случае не верно. Часто бывает достаточно знать приближенное значение результата для того, чтобы верно его оценить. Во всяком случае, достаточно сильно впечатляет, что приведенное в тексте простое рассуждение позволяет оценить порядок величины числа рисовых зерен на шахматной доске, не прибегая к утомительным многочасовым вычислениям и сложной компьютерной технике.

Тот, кто все же хочет знать точный результат, должен принять во внимание следующее соображение: каждый раз, когда мы заменяем число 1024 числом 1000 = 10³, то есть удобным для вычислений приближением, мы допускаем ошибку, составляющую 2,4 процента от точной величины. Эту ошибку в ущерб числу рисовых зерен мы совершаем на 11, 21, 31, 41, 51 и 61-м поле, то есть в шести пунктах шахматной доски. Таким образом, разница между грубо прикинутым количеством риса и точным числом рисовых зерен, которые надо высыпать на доску, составляет 6 × 2,4 = 14,4 %, то есть это величина относительной разницы между 16 квинтиллионами зерен и точным числом. 15 процентов от шестнадцати составляет 2,4, то есть 15 процентов от 16 квинтиллионов составляют 2,4 квинтиллиона, которые и надо прибавить к этому количеству, и в результате мы получим те же 18,4 квинтиллиона зерен.

Вооружившись высокопроизводительной вычислительной машиной, можно сложить 64 числа, каждое из которых получается в результате удвоения предыдущего числа, начиная с единицы. Результат в точности равен:

18 446 744 073 709 551 615,

то есть 18 квинтиллионам 446 квадриллионам 744 триллионам 73 миллиардам 709 миллионам 551 тысяче 615 рисовым зернам. Надо заметить, что существует более простой способ получения такого же точного результата: сумма всех предыдущих чисел равна удвоенному значению последнего числа минус единица. Вот, например, сумма зерен в первом ряду шахматной доски:

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 2 × 128 — 1 = 256 — 1 = 255.

Это значит, что для того, чтобы получить сумму всех зерен на шахматной доске, надо возвести два в 64 степень, и из полученного результата

18 446 744 073 709 551 616

вычесть единицу.

4

Насколько легко люди поддаются заблуждениям, показывает следующий пример: допустим, что Земля — это идеальный шар, окружность которого по экватору равна в точности 40 тысячам километров. Допустим, что этот шар по экватору туго обтянут шнуром. После этого шнур немного ослабляют, увеличив его длину на 10 сантиметров. Насколько удалится шнур от поверхности Земли, если удлинение распределить равномерно по всей длине шнура? Сможем ли мы просунуть под шнур хотя бы песчинку, имеющую в диаметре одну сотую миллиметра? Поразительный ответ гласит, что мы сможем просунуть под шнур не только крошечную песчинку, но даже довольно толстый палец диаметром более 1 сантиметра, причем сразу в нескольких местах приподнятого над поверхностью Земли шнура.

5

Гиппарх учел, что тень Земли имеет не цилиндрическую, но коническую форму. Угол раствора этого конуса, который определяет уменьшение диаметра тени при удалении от источника света, Гиппарх смог вывести из величины солнечного диска. Умелое применение тригонометрических закономерностей, хорошо известных греческим математикам того времени, позволило Гиппарху измерить и рассчитать расстояние от Луны до Земли с относительной погрешностью всего в один процент.

6

Аргумент, выдвинутый изобретателями «исчисления», можно попытаться защитить следующим образом: с одной стороны, «бесконечное» обладает тем свойством, что если из «бесконечного» вычесть единицу, то оно все равно останется «бесконечным», а с другой стороны, удвоенное «бесконечное» является опять-таки «бесконечным». Отсюда можно утверждать, что сумма

1 + 2 + 4 + 8 + 16 + …

может быть «бесконечной», и это вполне осмысленный результат. Тем не менее эта апология стоит на весьма шатком основании.

Во-первых, вычислять «бесконечное» не так просто, как вычислять конечные числа. Что, например, получится, если из «бесконечного» вычесть «бесконечное»? Любой человек, не задумываясь, ответит: ноль. Если, однако, второе «бесконечное» уменьшено на единицу по сравнению с первым «бесконечным», то разность должна быть равна единице, ибо второй «бесконечности» приписано на одну единицу меньше, чем первой. Кто-то может сказать, что если «бесконечное» вычесть из удвоенного «бесконечного», то получится снова «бесконечное», ибо из удвоенного «бесконечного» вычитают «бесконечное» одинарное. Короче, противоречие на противоречии.

Во-вторых, даже получение суммы частей уджата могло бы дать в результате бесконечность, ибо если поверить изобретателям «исчисления», то «бесконечное» обладает тем свойством, что, с одной стороны, «бесконечное», уменьшенное на одну вторую, остается «бесконечным» и что половина «бесконечного» опять-таки равняется бесконечности. С другой стороны, почему, собственно, на примере этой бесконечной суммы мы убеждены, что правильный ответ заключается в том, что сумма равна 1, а не бесконечности?

7

Приводим загадку Архимеда, отправленную им Эратосфену:

  Сколько у солнца быков, найди для меня, чужестранец. (Ты их, подумав, считай, мудрости если не чужд.) Как на полях Тринакрийской Сицилии острова тучных Их в четырех стадах много когда-то паслось. Цветом стада различались: блистало одно млечно-белым, Темной морской воды стада другого был цвет, Рыжим третье было, последнее пестрым. И в каждом Стаде была самцов множеством тяжкая мощь, Все же, храня соразмерность такую, представь, чужестранец, Белых число быков в точности было равно Темных быков половине и трети и полностью рыжим; Темных число быков четверти было равно Пестрых с прибавлением пятой и также полностью рыжим; Пестрой же шерсти быков так созерцай число: Части шестой и седьмой от стада быков серебристых, Также и рыжим всем ты их число поравняй. В тех же стадах коров было столько: число белошерстных В точности было равно темного стада всего Части четвертой и третьей, коль сложишь ты обе их вместе; Темных число же коров части четвертой опять Пестрого стада равнялось, коль пятую долю добавишь И туда же быков в общее стадо причтешь. Те же, чья пестрая шерсть, равночисленным множеством были Рыжего стада частям пятой и с нею шестой. Рыжих коров же считалось количество равным полтрети Белого стада всего с частию взятой седьмой. Сколько у солнца быков, чужестранец, коль точно ты скажешь, Нам раздельно назвав тучных быков число, Также раздельно коров, сколько каждого цвета их было, Не назовет хоть никто в числах невеждой тебя, Все же к мудрецам причислен не будешь. Учти же, пожалуй, Свойства такие еще солнца быков числа. Если быков среброшерстных ты с темными вместе смешаешь Так, чтобы тесно стали они бы в ширь и в длину Мерой равной, тогда на обширных полях сицилийских Плотным квадратом они площадь большую займут. Если же рыжих и пестрых в одно ты смешаешь стадо, Лесенкой станут они, счет с единицы начав, Так что фигуру они треугольную нам образуют; Цвета иного быков нам нет нужды добавлять, Если ты найдешь, чужестранец, умом пораскинув, И сможешь назвать каждого стада число, То уходи, возгордившись победой, и будет считаться, Что в этой мудрости ты все до конца превзошел.

Для любителей изысков приводим также юмористический перевод этого гекзаметра на немецкий язык, выполненный математиком Венского технологического института Александром Мельманом:

  Hast du, Freund, den richt’gen Riecher, So berechne, wieviel Viecher — Lass uns nur von Rindern reden, Hornbewehrte Quadrupeden — Einst gehörten, hü und hott, Helios — dem Sonnengott, Auf Siziliens grüner Erde.     Milchweiß war die erste Herde, Schwarz die zweite, zappenduster, Braun die dritte, Fleckenmuster Schmückte Rinderkuh und Stier In der Herde Nummer vier.     Zahl die Stiere ganz in Weiß, Die erhält man nur mit Fleiß Aus der reinen Braunstier-Zahl Plus der Hälfte und nochmal Plus ein Drittel aller schwarzen Stiere, deren Zahl — ihr Parzen! — Glich der Stierzahl aller Braunen (Schon vernehm’ ich. Freund, Dein Raunen) Nebst dem viert- und fünften Teil Der gefleckten Stier’, derweil Die (der Zahl nach) sich summierten Aus der Braunen, wohlsortierten, Nebst dem Sechst- und Siebentel Weißer Stiere, die zur Stell’.     Doch vergiss bei aller Müh’ Nicht des Sonnengottes Küh’. Statt die Zähn’ sich auszubeißen Beim Bestimmen all der weißen, Addier’ als Sonderfall Von der schwarzen Herdenzahl Nur ein Drittel und ein Viertel Und dann schnalle fest den Gürtel. Auch der schwarzen Kühe Nummer, Lässt sich finden ohne Kummer. Teil die Fleckviezahl durch Vier Und durch Funf und dann addier’! Elf durch dreißig der brünetten Rinder in Trinakriens Stätten Ist die Zahl der Küh’ mit Fleck. Rätselhaft bleibt noch der Zweck, Denn die Zahl der Braunviehdamen (Nichts zur Sache tun die Namen) Dividiert durch die der Rinder, Die so weiß, wie ihre Kinder, Sie ergibt ganz informell Ein Sechstel und sein Siebentel. Nennst du mir — getrennt nach Gender Und nach Farben der Gewänder (?) — All die Zahlen auf der Wiese, Bist fürwahr ein PISA-Riese! Zur Elite erster Klasse Ich dich erst gehören lasse, Wenn du lösest schnell wie‘ Pfeil Auch des Rätsels zweiten Teil. Wenn man sie zusammenführe Die Gesamtzahl aller Stiere, Die pechschwarz und weiß wie Schnee, So erhielt’ man ein Karree. Schichtet man der Stiere Rest Reihenweis’, wobei man lässt Jeweils in der nächsten Reih’ Gleich viel Hörner minus zwei, So benötigt man als Spitze Einen Stier nur (ohne Vize) Und die Rindviehformation Bildet glatt ein Dreieck schon.

(A. Mehlmann. Mathematische Seitensprünge: Ein unbeschwerter Ausflug in das Wunderland zwischen Mathematik und Literatur. Viehweg, 2007.)

В первой части ставится задача. Надо найти число рогатых тварей, именуемых в миру быками, которые пасутся на зеленых лугах Сицилии. Дальше говорится о том, что есть белые быки (их число мы обозначим w) и белые коровы (их число мы обозначим W), черные быки (их число мы обозначим s) и черные коровы (их число мы обозначим S), рыжие быки (их число мы обозначим b) и рыжие коровы (их число мы обозначим B), а также пестрые быки (их число мы обозначим g) и пестрые коровы (их число мы обозначим G). В третьей части фигурируют только быки. Здесь Архимед представляет следующие уравнения:

w = b + (½ + ⅓) s

s = b + (¼ + ⅕) g

g = b + (⅙ + 1/7) w

В четвертой части словесно формулируются еще четыре уравнения, с помощью которых можно вычислить число коров:

W = (⅓ + ¼) (s + S)

S = (¼ + ⅕) (g + G)

G = (⅕ + ⅙) (b + B)

B = (⅙ + 1/7) (w + W)

(В переводе Александра Мельмана сумма одной пятой и одной шестой описана как «одиннадцать тридцатых».)

В пятой части Архимед сообщает, что эти семь уравнений с восемью неизвестными, так называемые «диофантовы уравнения», имеющие целочисленные решения, являются лишь первой частью задания. В стихотворении Мельмана говорится, что тот, кто решит эти уравнения, может считать себя сдавшим ЕГЭ, но на принадлежность к математической элите такой человек претендовать не может.

В заключительной части Архимед говорит, что сумма s и w является квадратом: черных и белых быков можно выстроить в строй с равным количеством шеренг и колонн. Далее Архимед строит остальных быков, число которых равно b + g, в шеренги так, чтобы в каждой следующей шеренге было на одного быка меньше, чем в предыдущей, и таким образом в, так сказать, верхней строке окажется всего один бык. Выражаясь математически: b + g является числом треугольника. Поскольку числа треугольника представляют в виде ½ × (n² + n), а квадратные числа в форме m², постольку можно понять, что вторая часть задачи Архимеда представляет собой «диофантово уравнение» второй степени.

8

«Сложные взаимоотношения» обоих чисел восходят к одной древней проблеме, известной уже Пифагору. Пифагор предположил, что все в этом мире можно описать с помощью дробей, в которых числитель и знаменатель являются целыми числами (знаменатель, равный нулю, не рассматривается). Но уже геометрия показала ошибочность этого утверждения.

Если, например, построить на диагонали квадрата другой квадрат, для которого диагональ первого является стороной, то очевидно, что второй квадрат по площади в два раза превосходит первый. Допустим, что сторона первого квадрата равна х единиц длины — в данном случае не важно, что мы примем за такую единицу — метры, миллиметры или поперечный размер атома. После этого рассчитаем площадь первого квадрата в соответствующих единицах площади — квадратных метрах, миллиметрах или иных единицах. Для этого число единиц длины, составляющих сторону квадрата, надо умножить само на себя. Эту величину устно называют «икс-квадрат» и записывают так х². Если, например, х = 12, то х² = 144. Если у = 17, то у² = 289. Совершенно случайно 289 почти в точности равно удвоенному числу 144, то есть 288. Другими словами, у квадрата со стороной 12 см длина диагонали чуть-чуть меньше 17 см. То есть отношение диагонали квадрата к длине его стороны равно приблизительно 17/12. Однако греки задались вопросом: можно ли вообще выразить это отношение дробью вида x/y?

Будь это так, то у квадрата со стороной х единиц длины должна быть диагональ длиной у единиц. Площадь у² построенного на диагонали квадрата должна быть вдвое больше площади х² исходного квадрата. Это можно выразить формулой у² = 2х².

Говорят, что великому греческому философу Аристотелю принадлежит обоснование того факта, что не существует таких целых чисел х и у, для которых было бы справедливо равенство у² = 2х².

Допустим, однако, что такие числа существуют. Сначала Аристотель рассматривает случай, когда у — нечетное число. Тогда и у², будучи нечетным числом, при умножении само на себя дает в результате нечетное число. В таком случае невозможно равенство у² = 2х², потому что 2х², очевидно, делится на 2, то есть является четным числом.

Следовательно, у необходимо является четным числом, и у², то есть число у, умноженное само на себя, должно делиться на 4.

Но тогда, заключил Аристотель, х не может быть нечетным числом, ибо если оно является нечетным, то х², то есть число х, умноженное само на себя, является нечетным, и число 2х² делится на 2, но ни в коем случае не делится на 4, но оно должно делиться на 4, если верна формула у² = 2х².

На основании этих рассуждений Аристотель делает следующий вывод: если существуют числа х и у, для которых справедлива формула у² = 2х², то ни одно из этих чисел не может быть нечетным. Оба числа х и у должны быть четными.

Сторона квадрата, из которого мы исходили, должна, следовательно, иметь протяженность, равную четному количеству выбранных единиц длины, так же как четное количество единиц длины должно составлять протяженность его диагонали. Но, рассуждает дальше Аристотель, мы можем с равным успехом исходить из квадрата, у которого сторона и диагональ в два раза меньше, чем у квадрата исходного. Но и у этого квадрата длины сторон и диагонали должны выражаться четными числами единиц длины. Этот следующий квадрат мы снова можем уменьшить в отношении 1:2. Однако и в этом, меньшем квадрате длины сторон и диагонали опять-таки выражаются четными числами единиц длины.

Это последовательное деление сторон и диагоналей квадратов можно продолжать до бесконечности. Но как бы малы ни были стороны и диагонали квадратов, они все равно выражаются четными числами единиц длины, и поэтому и сторону и диагональ можно снова делить пополам.

Но это в конце концов приводит к абсурду, ибо стороны и диагонали квадратов содержат целочисленные значения единиц длины, и их невозможно произвольно делать сколь угодно малыми.

Поэтому, делает вывод Аристотель, вообще не существует целых чисел х и у, для которых справедливо равенство у² = 2х². (В наше время, возможно, кто-то стал бы протестовать, потому что при х = 0 и при у = 0 равенство становится справедливым. Но греки, при всем их уме, не считали ноль числом, а оперировали только положительными целыми числами 1, 2, 3, 4, 5…) Именно поэтому отношение длины диагонали к длине стороны квадрата не может быть дробью.

Есть, однако, одержимые математикой люди, которые не могут удовлетвориться полученными результатами. Эти люди постоянно задают вопросы и пытаются найти более всеобъемлющие решения.

Так и в нашем случае. Если уж нет чисел х и у, для которых справедливо равенство у² = 2х², то, может быть, существуют числа х и у, которые соответствуют справедливому равенству у² = 2х² + 1. При таком малом добавлении, как «+1», все меняется пренебрежимо мало, но зато камня не остается на камне от аргументации Аристотеля. Действительно, оказывается, что в приведенном выше примере с числами х = 12 и у = 17 это уравнение верно, как верно оно и для многих других чисел. Более того, удалось доказать, что у этого уравнения бесчисленное множество решений.

Пьер де Ферма, французский ученый-любитель, с которым мы познакомились как с соавтором «исчисления», вскользь упомянул о нем в частном письме. Ферма также утверждал, что множитель 2 перед х² в формуле у² = 2х² + 1 можно заменить любым другим целым числом, если оно само не является квадратом. Так, на самом деле существует бесконечное множество значений х и у, при которых справедливо равенство у² = 3х² + 1, и бесконечное множество значений х и у, удовлетворяющих равенству у² = 5х² + 1, и так далее. Иногда приходится долго искать значения неизвестных в данном равенстве. Например, в уравнении у² = 991х² + 1 первыми наименьшими значениями х и у, удовлетворяющими ему, являются гигантские числа:

х = 12 055 735 790 331 359 447 442 538 767

и

у = 379 516 400 906 811 930 638 014 896 080.

Откуда Ферма черпал свою убежденность, мы не знаем. Только через сто лет дотошный швейцарский математик Леонард Эйлер доказал, что Ферма был прав.

Архимед, однако, на много сотен лет раньше знал то, во что верил Пьер де Ферма и сумел доказать Леонард Эйлер. Дело в том, что вторая часть загадки о быках Гелиоса сводится к нахождению двух чисел х и у, удовлетворяющих уравнению

у²= 410 286 423 278 424х² 1.

Как мы видим, речь идет об уравнении того же типа, что и у² = 2х² + 1, у² = 5х² + 1 или у² = 991х² + 1. Единственное отличие — очень большой множитель перед х².

9

Для знатоков: значение 70 возникает потому, что 70 сотых, то есть 0,7, с вполне достаточной точностью соответствует натуральному логарифму числа 2.

10

Однако это лишь начало того, как математика может продуцировать большие числа.

Пример сказочно большого числа, перед которым бледнеет даже число 3↑↑↑3, мы получим, если воспользуемся методом, придуманным британским математиком Рубеном Луисом Гудстейном в 1944 г. Однако для того, чтобы проследить за его рассуждениями, мы начнем рассказ издалека.

Сначала мы разберемся, что значит представление числа «по основанию». При этом основанием мы назовем любое число, отличное от единицы. Рассмотрим, например, наименьшее из возможных оснований — число 2, и число 42. Мы делим это число на основание, то есть в нашем случае 42:2, получаем частное 21 и остаток 0 и записываем результат следующим образом:

42 = 21 × 2 + 0.

Теперь разделим частное на основание, в нашем примере, 21:2, и получаем частное 10 и остаток 1, то есть:

21 = 10 × 2 + 1.

Эту игру мы продолжим до тех пор, пока не получим частное, равное нулю. То есть последовательность результатов деления

42 = 21 × 2 + 0

21 = 10 × 2 + 1

10 = 5 × 2 + 0

5 = 2 × 2 + 1

2 = 1 × 2 + 0

1 = 0 × 2 + 1.

Теперь выписываем всю последовательность результатов:

42 = 21 × 2 + 0 =

= (10 × 2 + 1) × 2 + 0 = 10 × 2² + 1 × 2 + 0 =

= (5 × 2 + 0) × 2² + 1 × 2 + 0 = 5 × 2³ + 0 × 2² + 1 × 2 + 0 =

= (2 × 2 + 1) × 2³ + 0 × 2² + 1 × 2 + 0 = 2 × 24 + 1 × 2³ + 0 × 2² + 1 × 2 + 0 =

= (1 × 2 + 0) × 24 + 1 × 2³ + 0 × 2² + 1 × 2 + 0 =

=1 × 25 + 0 × 24 + 1 × 2³ + 0 × 2² + 1 × 2 + 0.

Итак, результатом

42 = 1 × 25 + 0 × 24 + 1 × 2³ + 0 × 2² + 1 × 2 + 0

число 42 представлено по основанию 2. Назовем полученные перед степенями двойки множители 1, 0, 1, 0, 1, а также приписанный в конце 0 (это множитель при нулевой степени 2 или 20 — которая равна единице, ибо нулевая степень любого числа считается равной единице) «цифрами» числа 42 по основанию 2. Выписанное выше представление 42 по основанию 2 можно в сокращенном виде записать так (1 0 1 0 1 0)2, или, подробнее:

42 = 1 × 25 + 0 × 24 + 1 × 2³ + 0 × 2² + 1 × 2 + 0 = (1 0 1 0 1 0)2.

Число 42 можно представить и по основанию 5. В этом случае процесс деления выглядит так:

42 = 8 × 5 + 2

8 = 1 × 5 + 3

1 = 0 × 5 + 1.

Теперь можно объединить эти результаты, представив их так:

42 = 8 × 5 + 2 = (1 × 5 + 3) × 5 + 2 = 1 × 5² + 3 × 5 + 2,

получив в итоге

42 = 1 × 5² + 3 × 5 + 2 = (1 3 2)5.

Еще проще представить 42 по основанию 7. Здесь достаточно двух делений

42 = 6 × 7 + 0

6 = 0 × 7 + 6,

откуда непосредственно вытекает представление

42 = 6 × 7 + 0 = (6 0)7.

Так же просто представить 42 по основанию 10. Для этого тоже нужны всего два деления:

42 = 4 × 10 + 2

4 = 0 × 10 + 4,

откуда следует представление 42 = 4 × 10 + 2 = (4 2)10.

Представление числа по основанию 10 известно нам со времен Адама Ризе: это обычная запись числа в десятичной системе.

Нам, однако, для последующего изложения важны различные основания, ибо только так мы поймем, что имел в виду Гудстейн, говоря о «раздувании» чисел: при раздувании числа 42 от основания 5 к основанию 6 в представлении

42 = 1 × 5² + 3 × 5 + 2

заменяют все числа 5 числом 5 + 1 = 6 и рассчитывают полученное таким образом число:

1 × 6² + 3 × 6 + 2 = 36 + 18 + 2 = 56.

При раздувании от основания 5 до основания 6 из числа 42 получают большее число, а именно 56. Точно так же можно раздуть число 42 от основания 7 до основания 8: исходя из равенства 42 = 6 × 7 + 0, образуют, заменяя 7 выражением 7 + 1 = 8, выражение 6 × 8 + 0 = 48. Здесь из числа 42 получается число 48. При раздувании числа 42 от основания 10 к основанию 11 заменяют 10 числом 10 + 1 = 11 и записывают: 4 × 11 + 2. Это дает раздутое число 46. Однако, раздувая число 42 от основания 2 к основанию 3, мы должны учесть одно дополнительное требование, установленное Гудстейном: по основанию 2 число 42 выглядит так:

42 = 1 × 25 + 0 × 24 + 1 × 2³ + 0 × 2² + 1 × 2 + 0.

Здесь мы видим показатели степени, которые точно так же можно представить по основанию 2, а именно:

5 = 1 × 2² + 0 × 2 + 1, 4 = 1 × 2² + 0 × 2 + 0, 3 = 1 × 2 + 1 и 2 = 1 × 2 + 0.

Эти представления показателей степеней вводят в вышеприведенную формулу так, чтобы в полученном представлении числа 42 нигде, включая и показатели степени, не встречались числа, бо́льшие 2:

42 = 1 × 2 1 × 22 + 0 × 2 + 1 + 0 × 2 1 × 22+ 0 × 2 +0 + 1 × 2 1 × 2 + 1 + 0 × 2 1 × 2 +0 + 1 × 2 + 0.

Для упрощения мы можем в этом представлении числа 42, которое мы обозначим 2(42), опустить все слагаемые с множителем 0. Таким образом, получаем:

2 (42) = 1 × 2 1 × 22 + 1 + 1 × 2 1 × 2 + 1 + 1 × 2.

Теперь Гудстейн раздувает число 42 от основания 2 к основанию 3, для чего он везде, где встречается число 2, заменяет его на 2 + 1 = 3. Таким способом он получает:

1 × 3 1 × 33 + 1 + 1 × 3 1 × 3 + 1+ 1 × 3 = 3 33+ 1+ 3 3 + 1+ 3 =328+ 3 4+ 3 = = 22 876 792 455 045

В таком раздувании действительно что-то есть.

Теперь будет полезным ввести для раздувания соответствующие обозначения. Мы записываем тот факт, что число a представляется по основанию b, следующим образом: b(a), и включаем в это представление все показатели степени, а также показатели показателей, чтобы в этом представлении нигде не встречались числа, большие b. Затем в этом представлении все числа b заменяют числом, большим, чем b на единицу, то есть на b + 1; в этом случае число a раздувается от основания b к основанию b + 1. Результат, полученный в этом случае Гудстейном, мы обозначим b + 1Ωb(a). Имеем 6Ω5(42) = 56, 8Ω7(42) = 48, 11Ω10(42) = 46 и 3Ω2(42) = 22 876 792 455 045.

Оказывается, что раздувание числа имеет место только в том случае, если основание b не превышает число a, подлежащее раздуванию. Так, например, представление 42 по основанию 43 есть не что иное, как само число 42, и замена 43 на 44 дает тот же результат. То есть 44Ω43(42) = 42. Естественно, 100Ω99(42) = 42, и вообще для каждого основания b, большего 42, будет справедливо равенство b+1Ωb(42) = 42. Если, однако, основание b намного меньше числа a, то величина b+1Ωb(a) буквально взрывается.

Теперь мы подошли к главному, к тому, ради чего Гудстейн изобрел понятие раздувания числа. Гудстейн исходил из некоторого числа a1. Сначала он представляет число a1 по основанию 2, то есть образует 2(a1), а затем раздувает это число от основания 2 к основанию 3, то есть вычисляет 3Ω2(a1). Из полученного таким способом числа он вычитает единицу и называет результат a2. То есть a2 = 3Ω2(a1) — 1. Это число Гудстейн представляет по основанию 3 и раздувает его от основания 3 к основанию 4, то есть вычисляет 4Ω3(a2). Следующее число a3 этой последовательности он получает, вычитая из этого результата единицу, то есть a3 = 4Ω3(a2) — 1. Теперь Гудстейн представляет число a3по основанию 4, раздувает его от основания 4 к основанию 5, то есть образует число 5Ω4(a3) и для того, чтобы получить число a4, вычитает из результата единицу: a4 = 5Ω4(a3) — 1. Дальше он продолжает в том же духе. Вот члены этой последовательности:

a1a2 = 3Ω2(a1) — 1, a34Ω3(a2) — 1, a5Ω4(a3) — 1, a5 = 6Ω5(a4) — 1….,

или, в общем виде, an = n + 1Ωn(an — 1) — 1.

Рассмотрим для примера последовательность Гудстейна при a1 = 3: имеем 2(3) = 1 × 2 + 1, и значит, 3Ω2(3) = 1 × 3 + 1 = 4, следовательно, a3Ω2(3) — 1 = 4 — 1 = 3. Теперь 3(3) = 1 × 3 и 4Ω3(3) = 1 × 4 = 4, а a3 = 4Ω3(3) — 1 = 4 — 1 = 3. Так как следующее число 4(3) = 3, то здесь раздувание ничего не меняет: 5Ω4(3) = 3, откуда a= 3 — 1 = 2. 6Ω5(2) равно 2, и значит, a5 = 2 — 1 = 1, а 7Ω6(1) = 1 и a6 = 1 — 1 = 0. С этого места все члены последовательности Гудстейна равны нулю.

Если начать последовательность с числа a1 = 4, то все происходит более энергично: действительно, 2(4) = 1 × 2², то есть 3Ω2(4) = 1 × 3³ = 27, следовательно, a2 = 3Ω2(4) — 1 = 27 — 1 = 26. Далее, 3(26) = 2 × 3² + 2 × 3 + 2, а значит, 4Ω3(26) = 2 × 4² + 2 × 4 + + 2 = 42, и, следовательно, a3 = 4Ω3(26) — 1 = 42 — 1 = 41. Следующие члены последовательности выглядят так: a4 = 60, a5 = 83, a6 = 109, a7 = 139. Очевидно, что члены последовательности растут. Действительно, придется долго ждать, прежде чем этот рост прекратится. После этого величина членов последовательности долгое время остается постоянной, а затем, по мере увеличения основания по сравнению с величиной членов последовательности, начнет постепенно уменьшаться. Лишь после члена последовательности с номером 3 × 2402 653 211 (это число с более чем 121 миллионом разрядов) все следующие члены обращаются в ноль.

Если рассмотреть последовательность Гудстейна с начальным числом a1 и если в этой последовательности после члена с номером n все остальные обращаются в ноль, (так что справедливо an = 1 и an + 1 = 0)то мы обозначим этот номер n выражением n = Θ (a1). При таких обозначениях имеем: Θ(1) = 1, Θ(2) = 3, Θ(3) = 5 и Θ(4) = 3 × 2402 653 211.

Последовательность Гудстейна с головокружительной скоростью растет, например, при a= 19. (Число 19 хорошо подходит для понимания сути процесса, так как следующие два члена последовательности можно записать в виде степенной башни.) Второй член последовательности вычисляется исходя из:

a2(19) = 222 + 2 + 1

и, таким образом,

3Ω2(19) = 333+ 3 + 1, a2 = 333+ 3

Это уже весьма большое число, а именно a2 = 7 625 597 484 990. Третий член последовательности, a3, вычисляют так:

4Ω3 (333+ 3) = 444+ 4, a3 = 444+ 3.

Этот член последовательности является числом, которое начинается с 13… и имеет 155 разрядов. Четвертый член последовательности является результатом следующих вычислений:

5Ω4 (444 + 3) = 555 + 3, a4 = 555+ 2.

Это число начинается с 18… и имеет 2185 разрядов. Пятый член последовательности получают так:

6Ω5 (555+ 2) = 666+ 2, a= 666+ 1.

Это число начинается с 26… и имеет 36 306 разрядов. И наконец, следующие вычисления дают шестой член последовательности согласно уравнениям:

7Ω6 (666+ 1) = 777+ 1, a6 = 777.

Это число начинается с 38… и имеет 659 974 разряда. Последовательность Гудстейна, начинающаяся с a1 = 19, приводит просто к немыслимо большим, неизмеримым числам.

Однако сам Гудстейн утверждает, что и эта последовательность рано или поздно закончится нулем. Это совершенно необъяснимо, но и сам Гудстейн не имеет ни малейшего представления о том, как долго придется ждать этих нулей. Он просто утверждает, что когда-нибудь это все же произойдет. Ясно одно — надо пройти гигантское число членов последовательности, число, превосходящее всякое воображение и всякие возможности его представления, чтобы когда-нибудь, при n = Θ(19), обнаружить, что an + 1 = 0. Более того, Гудстейн утверждает, что созданная им последовательность чисел

a 1a 2 3Ω2 (a 1) — 1, a 3 =4Ω3 (a 2) — 1, a 4 =5Ω4 (a 3) — 1, a 5 =6Ω5 (a 4) — 1….

всегда должна заканчиваться нулем, независимо от того, с какого числа a1начата эта последовательность. Это ошеломляющее, поистине невероятное высказывание. Мы не можем утверждать это даже для числа a1 = 19. Но закономерность справедлива, говорит нам Гудстейн, даже для такого чудовищно большого числа, как a1 = 3↑↑↑3. И это вопреки тому факту, что нам никогда не удастся назвать число 2(3↑↑↑3), а уж следующий член последовательности a2 = 3Ω2(3↑↑↑3) — 1 сокрыт и в вовсе непроглядном мраке.

В какой-то момент, уверен Гудстейн, когда основания для каждого последующего члена увеличивают на единицу, мы получим гигантские значения членов последовательности. Для того чтобы обосновать это, Гудстейн, однако, должен дать точное математическое определение бесконечному, к которому стремятся лопающиеся от своей величины члены последовательности Гудстейна. Мы подробнее поговорим об этом в последней главе. Соответствует ли эта математическая модель существу самого понятия бесконечного — вопрос открытый, и, вероятно, он всегда останется открытым.

Если принять примененную Гудстейном математическую модель бесконечности всерьез, то фактически он прав. Существуют не только числа Θ(1), Θ(2), Θ(3) и Θ(4), существует также и число Θ(19). Собственно, должно существовать и число Θ(3↑↑↑3) — поистине головокружительное число.

11

Все дело в том, что при делении 10, 100, 1000, … на три в остатке всегда остается 1. Если, например, разделить на три число 4281, то при делении на три числа 4000 получится остаток 4 × 1 = 4, при делении на три числа 200 образуется остаток 2 × 1 = 2, при делении 80 на три остаток составит 8 × 1 = 8, а при делении единицы на три остаток будет равен 1 × 1 = 1. Поэтому остаток от деления числа 4281 на 3 будет равен 4 + 2 + 8 + 1 = 15, а это число делится на три без остатка, и поэтому остаток от деления числа 4281 на три равен нулю.

12

То, что Мерсенн показал на этом примере, справедливо всегда: если рассмотреть число, представленное двумя множителями a и b, то есть a × b, причем оба числа a и b больше единицы, то справедливо будет следующее равенство

a × b — 1 = (2a — 1) × (1 + 2a+22a +… + 2 (b — 1) × a),

правая часть которого является составным числом.

13

Чтобы воздать должное истине, надо сказать, что Ферма записывал эти числа в виде степенных башен. То есть эти числа принимают одновременно следующую форму:

220 + 1 = 2 + 1 = 3, 2 21 + 1 = 4 + 1 = 5, 222 + 1 = 16 + 1 = 17,

223 + 1 = 256 + 1=257.

и так далее.

14

В принципе, можно было последовательно делить число 4 294 967 297 на простые числа из достаточно длинной и полной таблицы простых чисел с тем, чтобы проверить, не делится ли данное число на какое-либо из простых чисел без остатка. Однако этот способ, не говоря уже о массе потраченного времени, невероятно примитивен. Наверняка Эйлер пошел другим путем. Вероятно, он нашел, что 641 = 54 + 24 и одновременно 641 = 5 × 27 + 1. В силу справедливости первой формулы 641 делит без остатка число (54 + 24) × 228, а в силу справедливости второй формулы 641 делит без остатка число 54 × 228 — 1, потому что его можно разложить следующим образом:

54 × 228 – 1 = (5 × 2+ 1) × (5³ × 221 – 5² × 214 + 5 × 27 – 1).

Следовательно, если число 641 является делителем чисел (54 + 24) × 228 и 54 × 228 — 1, то оно является и делителем их разности, то есть числа

(54 + 24) × 228 — (54 × 228 – 1) = 24 × 228 + 1 = 232 + 1 = 4 294 967 297.

15

Нам, однако, хотелось бы понять, почему вообще работает такой своеобразный способ шифрования и дешифровки? Для того чтобы ответить на этот вопрос, надо в довольно далекое прошлое и оглянуться на Пьера де Ферма, отличавшегося неслыханным остроумием правоведа эпохи барокко, посвящавшего все свое свободное время изучению чисел.

Можно представить себе, что Ферма был одержим вычислениями. С маниакальным упорством он искал и находил тайны чисел. Он, например, обнаружил, что пятые степени всех цифр заканчиваются той же цифрой, стоящей в разряде единиц: число 05 = 0 оканчивается на ноль, число 15 = 1 оканчивается на единицу, число 25 = 32 оканчивается на два, число 35 = 243 оканчивается на три, число 45 = 1024 оканчивается на четыре, число 55 = 3125 оканчивается на пять, число 65 = 7776 оканчивается на шесть, число 75 = 16 807 оканчивается на семь, число 85 = 32 768 оканчивается на восемь, а 95 = 59 049 оканчивается на девять. А как обстоят дела с третьими степенями? В данном случае такой закономерности нет. Например, 2³ = 8, это число не оканчивается двойкой. Но Ферма находит, что 2³ — 2, то есть 8 — 2 = 6 без остатка делится на показатель степени три. Собственно, это то же самое, что было установлено им выше, а именно что пятая степень любой цифры минус эта цифра делится на пять. Ферма продолжает считать дальше: 3³ — 3 = 27 — 3 = 24, и это число на самом деле делится на три. Точно так же Ферма устанавливает, что 4³ — 4 = 64 — 4 = 60, и это число тоже делится на три, что 5³ — 5, то есть 125 — 5 = 120, и это число тоже делится на три, что 6³ — 6, то есть 216 — 6 = 210, и это число делится на три, что 7³ — 7, то есть 343 — 7 = 336, делится на три, что 8³ — 8, то есть 512 — 8 = 504, делится на три, что, далее, 9³ — 9, то есть 729 — 9 = 720, делится на три, что даже 10³ — 10, то есть 1000 — 10 = 990, делится на три и что 11³ — 11, то есть 1331 — 11 = 1320, тоже без остатка делится на три.

Это не может быть случайностью! Или все-таки может? Что, если исследовать четвертые степени чисел? Ну, например, 34 = 81. Однако 34 — 3, то есть 81 — 3 = 78, и это число не делится на четыре. Посмотрим, как обстоят дела с седьмыми степенями? В примере 27 = 128 этот феномен снова всплывает во всей своей красе: 27 — 2, то есть 128 — 2 = 126, и это число делится на семь. При 37 = 2187 это правило тоже действует, ибо 37 — 3, то есть 2187 — 3 = 2184, делится на семь.

Ферма не смог подтвердить этот феномен при показателе степени 4, однако закономерность имела место при показателях 5, 3 или 7. Числа 3, 5 и 7, подумал Ферма, простые. 4 таким числом не является. Может быть, дело именно в этом?

Эта мысль уже не отпускает Ферма. Если обозначить простое число символом p, то, возможно, для каждого числа a разность ap — a делится без остатка на простое число p.

Изысканное рассуждение, развитое современником и другом Ферма по переписке Блезом Паскалем, утвердило Ферма в его дальнейших предположениях.

Что произойдет, спросил себя Ферма, если брать не p-ю степень числа a, то есть число ap, а вычислить p-ю степень следующего числа, то есть (a + 1)p? Это число можно представить в виде следующего выражения:

(a + 1)p = (a + 1) (a + 1) (a + 1) … (a + 1).

Или, другими словами, необходимо перемножить p чисел (a + 1). Такое вычисление может показаться страшно утомительным — особенно если p является очень большим простым числом. Однако из этого вычисления можно кое-что установить.

Давайте, например, рассмотрим его для простого числа p = 5. В результате перемножения получаем:

(a + 1)5 = (a + 1) (a + 1) (a + 1) (a + 1) (a + 1) = a5 + 1 + 5a+ 10a³ + 10a² + 5a.

Как мы приходим к такому результату? С первым слагаемым a5 все ясно: все пять первых слагаемых a в скобках перемножаются между собой. Также все ясно со вторым слагаемым: все пять вторых слагаемых 1 в скобках тоже были перемножены между собой. Третье слагаемое 5a4получается так: из выражений в скобках берут четыре первых слагаемых a, одно второе слагаемое 1 и перемножают их между собой. Получается ровно пять возможностей выбора, откуда возникает множитель 5 перед степенью a4. Точно так же можно объяснить, откуда берется последнее слагаемое 5a. Четвертое слагаемое 10a³ получается так: из скобок выбирают три первых слагаемых a и два вторых слагаемых 1 и перемножают их. Сколько возможностей такого выбора? Для одного второго слагаемого 1 таких возможностей ровно пять, а для другого второго слагаемого 1 только четыре, ибо одно из чисел 1 уже было выбрано в качестве первого слагаемого 1. Всего это означает 5 × 4 = 20 возможных выборов. Впрочем, надо обратить внимание на то, что каждые два выбора из них дают одинаковые результаты, ибо для обоих выбранных чисел 1 совершенно безразлично, какое из них было «первым», а какое «вторым» из выбранных слагаемых. Число возможных перестановок двух выбранных чисел равно 1 × 2 = 2. На это число 2 надо разделить число 20, откуда получается множитель 10 перед степенью a³. И наконец, пятое слагаемое 10a² получается следующим образом: из скобок выбирают два первых слагаемых a и три вторых слагаемых 1 и перемножают их всеми возможными способами. Сколько существует возможностей выбора? Для первого из двух слагаемых 1 таких возможностей, очевидно, пять, для следующего второго слагаемого 1 остается только четыре, а у третьего и последнего второго слагаемого 1 таких возможностей всего три. Это означает, что возможных вариантов перемножения будет 5 × 4 × 3 = 60. Надо, однако, учесть, что для каждого выбора в каждых шести выборах результат перемножения будет одним и тем же, ибо не важно, какое именно из трех чисел 1 было «первым», «вторым» или «третьим» выбрано вторым слагаемым 1. Число возможных перестановок из трех выбранных чисел равно 1 × 2 × 3 = 6. Надо разделить 60 на это число, и мы получим множитель 10 перед степенью a².

Надо при этом заметить, что все множители 5, 10, 10 и 5 делятся на пять. Это связано с тем, что пять — простое число.

Теперь запишем в общем виде, как вычисляют выражения вида

(a + 1)p = (a + 1) (a + 1) (a + 1)… (a + 1).

Для начала надо перемножить между собой все слагаемые a. Это дает в результате ap. Вторым шагом является перемножение между собой всех слагаемых 1. Это дает в результате 1p = 1. То есть:

(a + 1)p = (a + 1) (a + 1) (a + 1)… (a + 1) = ap + 1 + …

То, что здесь стыдливо обозначено точками …, — это все остальное, что получается от перемножения друг на друга всех слагаемых. В ходе такого перемножения будут получаться степени ap — 1ap — 2ap — 3, и вопрос заключается в том, насколько часто будет встречаться каждая из этих степеней. Например, степень ap — 1 получается оттого, что p — 1 первых слагаемых a перемножают с одним из всех вторых слагаемых 1. Всего возможностей для такого перемножения существует ровно p. Таким образом, степень ap — 1 появится на месте точек в виде pap — 1. Или степень ap — 2 появляется в результате того, что p — 2 первых слагаемых a перемножаются с двумя вторыми слагаемыми. Сколько раз эта степень встретится в результатах перемножения? Для одного из обоих вторых слагаемых 1 существует p возможностей выбора, а для другого второго слагаемого таких возможностей остается уже p — 1. Всего таких возможностей, следовательно, будет p × (p — 1). Однако это выражение надо разделить на произведение 1 × 2, потому что совершенно несущественно, какое из двух слагаемых 1 было выбрано первым, а какое — вторым. Таким образом, степень ap — 2встречается среди слагаемых, замененных точками,


раз. В общем виде можно представить, что степень ap — n возникает в результате того, что p — nпервых слагаемых a перемножают в точности с n вторых слагаемых 1. Сколько раз встретится в окончательном результате перемножения степень ap — n? Для первого из n вторых слагаемых существует ровно p возможных выборов, для второго слагаемого 1 существует только p – 1 возможных выборов, и так далее, вплоть до n-го слагаемого 1, для которого число возможных выборов равно p — n + 1. В результате число возможных выборов становится равно p × (p — 1) × … × (p – n + 1). Это число, однако, надо разделить на произведение 1 × 2 × 3 × … × n, ибо какое из n слагаемых 1 будет выбрано в качестве первого, второго, …, n-го, представляется несущественным. Таким образом, степень ap — n встретится на месте точек



раз.

Множители перед степенями a выглядят дробями только по видимости; на самом деле это целые числа. Другими словами, знаменатель записанной дроби наверняка является делителем числителя. Тем не менее простое число p, записанное первым, не делится на знаменатель, так как именно в этом и заключается суть простого числа. Поэтому множители, стоящие перед степенями a, начиная с ap — 1и заканчивая a = a1, являются не только целыми числами, но и числами, кратными простому числу p.

Обобщая, получаем:

(a + 1)p = ap + 1 + …,

причем все числа, скрытые за обозначением …, делятся на простое число p.

Допустим, утверждает далее Ферма, что мы уже знаем, что ap — a без остатка делится на p. Тогда, согласно уравнению

(a + 1)p –(a + 1) = ap + 1 + … — (a + 1) = ap + 1 + … – a — 1 = ap — a + …

и вследствие того факта, что все числа, скрытые за многоточием, делятся на p, разность (a + 1)p — (a + 1) тоже делится на p.

Тем самым Ферма наглядно показал то, что хотел доказать, ибо 1p — 1, очевидно, делится на p. Проведенное выше рассуждение показывает, что отсюда и 2p — 2 тоже делится на p. Точно такое же рассуждение доказывает, что и 3p — 3 тоже делится на p. Точно такое же рассуждение, проведенное еще раз, доказывает, что и 4p — 4 делится на p. Так можно от каждого числаa, о котором известно, что ap — a делится на p, перейти к следующему числу a + 1 и уже относительно его установить, что (a + 1)p — (a + 1) делится без остатка на p.

Доказанный здесь факт называют теоремой Ферма. Это не «большая теорема Ферма», о которой рассказывает Саймон Сингх в своей чудесной книжке «Великая теорема Ферма», а так называемая «малая теорема». Правда, эта теорема вовсе не «малая», скорее она очень даже значительная. Кстати сказать, Ферма ни словом не обмолвился, как он пришел к этой теореме. Только столетие спустя Леонард Эйлер смог доказать, почему эта теорема верна. Если известно, что ap — a = a(ap — 1 — 1) делится на простое число p и если само число a на p не делится, то отсюда следует, что при делении ap — 1на p необходимо получается остаток, равный единице, потому что если a не делится на p, то ap — 1 — 1 должно делиться на p. Это утверждение иногда тоже называют «малой теоремой Ферма».

Например, при делении двенадцатой степени любого, не делящегося на 13 числа получается остаток, равный единице. Или при делении шестнадцатой степени любого, не делящегося на 17 числа получается остаток, равный единице.

Здесь довольно неожиданно снова подходим к методу шифрования Джорджа Смайли: дело в том, что малая теорема Ферма гласит: для каждого, не делящегося на 13 числа a, в частности для a = 7 при делении числа a12 на 13 получится остаток, равный единице. Малая теорема Ферма гласит также, что — в случае, если a не делится на 17, — шестнадцатая степень числа a12, то есть число (a12)16 = a12 × 16 = a192 делится на число 17 с остатком, равным единице. На 13 это же число тоже делится с остатком, равным единице. То есть при делении степени a192 на модуль 13 × 17 = 221 мы с гарантией получим остаток, равный единице. Запишем это в виде формулы: a192 ≡ 1.

Число 192, которое мы получили в результате следующего вычисления: (13 — 1) × (17 — 1) = 12 × 16, столь же секретно, как и извлеченный Тоби Эстерхази из сейфа секретный коэффициент 35. Назовем 192 «секретным модулем».

Умники из Цирка определили, с помощью секретного модуля 192, для степени 11 секретную экспоненту 35. Это число, 35, появляется в силу того, что для него справедливо равенство 35 × 11 = 1 + 2 × 192. Смайли отправил в Цирк из-за железного занавеса радиограмму с числом 184. Это был остаток, который при a = 7 получается от деления a11 на число 221. В общем виде назовем остаток, который получается при делении a11 на 221, кодированным, или зашифрованным, числом c. В нашем случае c = 184. Тоби Эстерхази вычисляет остаток от деления c35 на 221, то есть числа (a11)35на 221. Тем самым он декодирует зашифрованное послание c, превращая его в исходное сообщение a. Почему?

Потому что в (a11)35 число a умножается само на себя 11 × 35 раз, что, в силу того что 35 × 11 = 1 + 2 × 192, означает, что число a суммарно 2 × 192 раз, а затем еще один раз умножается само на себя. Если 192 раза перемножить число a само на себя, после его деления на 221 получится остаток 1. Если то же самое сделать 2 × 192 раз, то получится тот же остаток 1, потому что 1 × 1 = 1. Если же этот остаток еще раз умножить на a, то в итоге получится остаток a × 1. Другими словами, остаток от деления c35 на модуль 221 равен a × 1, то есть a. Поэтому Тоби, после вычисления остатка от деления 18435 на 221, узнает о желании Смайли встретиться с агентом номер 7.

16

Фактически уже за три года до этого британский математик Клиффорд Кристофер Кокс пришел к этой идее. В США, однако, о ней никто не знал, потому что британская секретная служба скрывала ее не только от Советского Союза, но и от Соединенных Штатов.

17

Это следует из так называемой теоремы о распределении простых чисел, о существовании которой догадывался еще Гаусс: количество простых чисел в ряду до какого-то большого числа x равно приблизительно частному от деления этого числа x на его натуральный логарифм. В свою очередь, этот натуральный логарифм приблизительно равен числу разрядов x, умноженному на 2,3.

18

Решающим здесь является то, что Смайли после отправки шифрованной радиограммы, безусловно, должен был уничтожить листок, извлеченный из подошвы ботинка. Предположим, что Смайли совершил бы смертный грех и отправил бы другое сообщение, скажем 0 0 3 0 0 3 0 0 3, закодировав его с помощью той же последовательности, что и при отправке предыдущего сообщения. Кодируется это сообщение тем, что Смайли складывает обе строки

1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 …

0 0 3 0 0 3 0 0 3

и получает следующую строку:

1 4 4 5 9 5 6 5 6 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8…

То есть отрезок отправленного сообщения будет выглядеть так:

1 4 4 5 9 5 6 5 6.

Смайли, однако, должен понимать, что Карла перехватит оба отправленных им шифрованных сообщения, и его люди напишут их одно под другим:

1 4 8 5 9 9 6 5 0

1 4 4 5 9 5 6 5 6.

Если теперь люди Карлы вычтут нижнее сообщение из верхнего по модулю десять, то получат

0 0 4 0 0 4 0 0 4,

то есть увидят явную систему, очевидный «узор». Обнаружение системы — это залог к успешной дешифровке вражеского кода. При многократном применении одного листка шифр становится очень ненадежным. Поэтому использовать листки блокнота можно только один раз, и блокнот называется «одноразовым».

19

Ситуация, при которой цифры бесконечно появляются друг за другом, известна уже школьникам начальных классов с момента, когда они начинают изучать деление. Это действие редко выполняется так же гладко, как при делении 42: 6 = 7. В большинстве случаев при делении получают остаток. Например, при делении 42 на 15 получают частное 2, потому что дважды пятнадцать целиком содержится в 42, но при этом получается остаток 12. Он получается, потому что дважды 15 не равно в точности 42, но лишь 30, и разница между 30 и 42 как раз и равна 12. Поэтому записывают:


Однако деление остатка 12 на 15 невыполнимо, так как 15 ни одного раза не содержится в 12. Адам Ризе, научивший нас позиционной записи, смог выполнить деление дальше, воспользовавшись числом 0. Он добавил к 12 число 0, то есть умножил остаток 12 на 10, и смог таким образом довести деление до конца, разделив число 120 без остатка на 15. В двух строках это действие выглядит так:



Результат он записывает в виде десятичного числа 2,8. Дети в школе учатся записывать обе эти строки так: сначала записывают деление 42 на 15 как



То есть аккуратно записывают остаток 12 под делимым 42. Затем к 12 «подвешивают» 0, а к частному 2 пририсовывают запятую:



и делают следующий шаг: делят 120 на 15, получают число 8, которое записывают после запятой, а под числом 120 подписывают остаток 0:



При делении 42 на 13 начало выглядит похоже:



Однако в этом случае получается еще один остаток. В этом случае Адам Ризе предписывает нам снова приписать 0 к остатку и продолжить деление:



Снова получается остаток. Следовательно, надо продолжать процедуру дальше:



Конца этому процессу не видно. Но, во всяком случае, снова появился первый остаток — 3, значит, вся предыдущая процедура будет снова и снова повторяться до бесконечности. В результате мы получим «бесконечную десятичную дробь»

42: 13 = 3,230769230769230769230769230769230769230769…,

в которой последовательность цифр 230769 представляет собой так называемый период.

Ясно, что при делении целых чисел всегда получаются периодические бесконечные дроби, если деление не обрывают раньше, так как в каком-то месте должен получиться остаток, который уже получался в предыдущих делениях; существует лишь конечное число возможных остатков, а именно их число равно делителю.

20

Для знатоков предмета: число 10 должно быть так называемым «первообразным» корнем такого делителя. Другими словами: если обозначить делитель буквой m и делить ряд степеней 10, то лишь при делении числа 10m — 1 на число m получается остаток 1. Например, число 10 является первообразным корнем делителей 7 или 113, но не является первообразным корнем делителя 3 (уже 10: 3 дает остаток 1) или делителя 13 (13 × 76923 = = 999 999, то есть уже при делении 106 на 13 получается остаток 1).

21

Если повезет, то может случиться так, что намного меньшее число, выступающее в роли делителя, приведет к этой чрезвычайно длинной и, как представляется, случайной последовательности — в лучшем случае числа, состоящего «только» из пары сотен разрядов. Конечно, это намного меньше числа, состоящего из 10200 девяток, то есть из 10200 разрядов. Однако 10 должно быть первообразным корнем этого приблизительно двухсотзначного делителя.

22

Прорези могут быть прикрыты расположенной снизу длинной линейкой: если линейку сдвигают вверх, под ней обнаруживаются пять прорезей, и в них нанесены цифры. При этом все устроено так, что сумма цифр в парах прорезей — верхней и нижней — равна девяти. Если сверху прочитывается число 31 415, которое прикрывается сдвинутой кверху линейкой, то в открывшихся прорезях видны цифры 68 584. Мы назовем это число «сопряженным» с числом 31 415.

23

На валиках с нанесенными цифрами, которые видны в прорезях, Паскаль поместил в двух строчках по 10 цифр от нуля до девяти. В верхней строчке в следующем порядке: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 — так, чтобы при вращении соответствующего колесика по часовой стрелке значения цифр возрастали; в нижней строчке цифры последовательности расположены в противоположном порядке: 9, 8, 7, 6, 5, 4, 3, 2, 1, 0. Эти цифры нижней строчки становятся видны только в том случае, когда уже упомянутую прикрывающую линейку сдвигают кверху. Если, например, в верхней строке прочитывается первое число 31 415, то в нижней появляется второе число 68 584, сопряженное с первым. Смысл этого устройства состоит в том, чтобы его можно было использовать для выполнения не только сложения, но и вычитания. Собственно, вычитание становится возможным при вращении колесика против часовой стрелки, но такое вращение ломало рычажный механизм переноса. Поэтому Паскаль установил в машине стопор, предотвращавший обратный поворот колесика. Например, вычитание 61 — 45 Паскаль с помощью своей машины выполнял, следуя своим изящным соображениям относительно сложения, так: рассчитывается число, сопряженное с 61. Для этого его вычитают из 99 999 и получают 99 999 — 61 = 99 938. Если прибавить к этому число 45, то получится

99 999 — 61 + 45 = 99 999 — (61 — 45).

Это и есть сопряженное число разности 61 — 45, которую мы хотим найти. Фактически получается сумма 99 938 + 45, то есть число 99 983, а сопряженное с ним число есть 00016, то есть искомая разность. Исходя из этого Паскаль вычисляет ее, то есть 61 — 45, следующим способом: на «паскалине» он устанавливает число 00061, но устанавливает в нижних прорезях. В верхних прорезях появляется сопряженное ему число 99 938, но этот результат Паскаля не интересует, и он выполняет сложение, прибавляя 45 при открытых нижних прорезях, где видит искомое число 00016.

24

Элемент, соответствующий логическому высказыванию «не-p», сокращенно обозначаемом ¬pназывается инвертором (вентилем «НЕ»). Элемент, соответствующий логическому высказыванию «ни p, ни q», сокращенно обозначаемому pq, называется вентилем «ИЛИ-НЕ».


При последовательном соединении вентиля «ИЛИ-НЕ» и инвертора получается вентиль «ИЛИ», соответствующий логическому высказыванию «или p, или q, или и p, и q», сокращенно обозначаемому p ∨ q. Только когда p = 0 и q = 0, p ∨ q = 0. Во всех других случаях p ∨ q = 1, ибо в этом случае по крайней мере одно из высказываний p или q является истинным, что отвечает выражению «или».



Два параллельно подключенных инвертора и один последовательно соединенный вентиль «ИЛИ-НЕ» дают вместе вентиль «И». Это соединение соответствует логическому высказыванию «p и q», сокращенно обозначаемому p ∧ q. Только если p = 1 и q = 1, p ∧ q = 1. Во всех остальных случаях p ∧ q = 0, ибо в таких случаях по крайней мере одно из высказываний p или q является ложным, а значит, ложным является и высказывание «p и q».

25

Представим себе три входа, обозначенные p, q и r, подключенные к семи параллельным вентилям «И».


Перед левыми тремя из семи вентилей «И» в разных комбинациях в два из трех входов включены инверторы. Перед правыми тремя из семи вентилей «И» в разных комбинациях в один из трех входов также включены инверторы. Только к среднему из семи вентилей «И» все три входа p, q и rподключены непосредственно. Выход среднего вентиля «И», разветвляясь, идет на вход двух вентилей «ИЛИ». На левый вентиль «ИЛИ» идут также выходы из трех левых вентилей «И», а на правый вентиль «ИЛИ» идут выходы из трех правых вентилей «И». Выход из левого вентиля «ИЛИ» мы обозначим символом s, а выход из правого вентиля «ИЛИ» мы обозначим символом t.

Такую схему называют полным сумматором, ибо, какие бы значения ни принимались на входах p, q и r, 0 или 1, значения s и t всегда будут таковы, что s + 2t (что в двоичной системе Лейбница соответствует s + 10t) будет равно сумме p + q + r, где s символизирует разряд единиц этой суммы, а tсоответствует переходу во второй разряд (что в двоичной системе Лейбница соответствует разряду десятков).

26

Ниже приводится высказывание из программного выступления Гильберта по радио вплоть до заключения:

«Действительно, мы овладеем какой-либо естественно-научной теорией не раньше, чем сможем вычленить ее математическое ядро и полностью снять с него покров. Без математики совершенно невозможны современные астрономия и физика, которые находят свои теоретические решения именно в математике. Эти, а также другие ее приложения обеспечили математике высокую репутацию, которой она пользуется в обществе.

Несмотря на это, математики единодушно отвергают стремление считать приложения мерилом достоинств математики.

Гаусс говорит о колдовском очаровании, каковое сделало теорию чисел любимой наукой первых в истории математиков, не говоря уже о ее неисчерпаемом богатстве, в отношении которого эта часть математики возвышается над всеми остальными ее сферами.

Кронекер сравнивает специалистов по теории чисел с лотофагами, которые, отведав этой пищи, не могли уже от нее отказаться.

Великий математик Пуанкаре резко критикует Толстого, заявившего, что требование «науки ради науки» глупо и абсурдно. Достижения промышленности, например, никогда не увидели бы свет, если бы существовали одни только практики и если бы не было незаинтересованных чудаков.

Величие человеческого духа, сказал однажды выдающийся кенигсбергский математик Якоби, вот единственная цель всей науки».

27

Изначально Шредингер вывел уравнение для ψ с учетом специальной теории относительности Альберта Эйнштейна. Однако из-за того, что некоторые возможные решения показались Шредингеру слишком курьезными, он сформулировал уравнение, не оглядываясь на теорию относительности. С помощью этого упрощенного уравнения, названного по имени автора уравнением Шредингера, эксперты по квантовой механике смогли очень точно описать свойства атомов и молекул, ибо в этом контексте специальная теория относительности не играет практически никакой роли. Коллега Шредингера Поль Дирак воспользовался его идеей и переписал уравнение для ψ с учетом положений специальной теории относительности. Для тех решений, которые Шредингер отбросил как слишком экстравагантные, Дирак нашел вполне осмысленные физические интерпретации. Так, из уравнения Дирака вытекает, что для каждой элементарной частицы должна существовать противоположно заряженная античастица. Последующие эксперименты блестяще подтвердили теоретическое предсказание Дирака. Уравнение на ψ, учитывающее положения общей теории относительности Эйнштейна, правда, пока не выведено.

28

Согласно одной забавной легенде, один скептик как-то пожаловался Гильберту, что из его геометрии совершенно невозможно понять, что имеется в виду под словами «точки», «прямые» и «плоскости». В аксиомах эти понятия выглядят абсолютно пустыми словами, лишенными всякого наглядного смысла. «Совершенно верно, — будто бы ответил Гильберт коллеге, — о существе понятий в формальной математике речь не идет». Можно, по Гильберту, в его системе аксиом заменить слова «точки, прямые и плоскости» словами «столы, стулья и пивные кружки».

29

Вопрос о том, конечным или бесконечным является число нулей в десятичном представлении числа π, является отнюдь не праздным. Представим себе следующую конструкцию множества: первому нулю, найденному в десятичном представлении π, приписывают число 1 множества. Как только обнаруживается второй ноль, к образованному множеству добавляют ½. После нахождения третьего нуля в десятичном представлении числа π к множеству добавляют ⅓. Вообще говоря, в множество добавляют 1/n, когда находят n нулей в десятичном представлении числа π. Вопрос о том, конечным или бесконечным является число нулей в десятичном представлении числа π, равнозначен, таким образом, вопросу о том, состоит ли наше множество из конечного или бесконечного числа элементов.

Этот вопрос имеет непосредственное отношение к аксиомам исчисления чисел с бесконечным десятичным представлением. Полученное нами множество состоит из положительных дробей и должно, согласно одной основополагающей аксиоме, обладать так называемой точной нижней границей, или нижней гранью. Под нижней гранью имеют в виду число x с бесконечным десятичным представлением, обладающее следующими двумя свойствами: с одной стороны, любая дробь множества не меньше чем x, а с другой стороны, для каждого y, большего, чем x, существует принадлежащая множеству дробь, меньшая чем y.

Однако чему равна нижняя грань x?

Если число нулей в десятичном представлении числа π конечно, то x = 1/m той положительной дроби, где m есть число нулей в десятичном представлении числа π.

Если же в десятичном представлении числа π содержится бесконечное число нулей, то x = 0.

Если мы не можем допустить существования «ignorabimus», то Гильберт должен смочь решить, является x положительным числом или нет. Таким образом, пустяковый и незначительный, на первый взгляд, вопрос привел к трудным проблемам, потрясшим основы мышления.

30

Этим словом Герман Вейль в своей статье «О новом кризисе основ математики» (Über die neue Grundlagenkrise der Mathematik) наилучшим образом выразил сущность точки зрения Гильберта.

31

Так пишет Анита Элерс в своей прекрасной книге «Боже мой! Физики и математики в анекдотах» (Liebes Hertz! Physiker und Mathematiker in Anekdoten).

32

Анри Картан и Андре Вейль, два молодых французских математика, которые вместе учились, а в начале 1930-х гг. преподавали в Страсбургском университете, организовали 10 декабря 1934 г. по случаю своего регулярного участия в Парижских математических семинарах встречу со своими молодыми коллегами в кафе «Капулад» на бульваре Сен-Мишель. Вся группа решила противопоставить устаревшим университетским учебникам новые, современные сочинения. Вероятно, на всех произвел должное впечатление стиль преподавания Давида Гильберта и Эмми Нётер, лекции которых слушали некоторые из молодых друзей.

Всем присутствующим представлялось важным, чтобы этот новый со всех точек зрения учебник представил всю математику от самых ее оснований. В их глазах математика была большой игрой, своего рода многомерными шахматами, каковыми математика рисовалась Давиду Гильберту в его программе.

Эти молодые математики, собравшиеся в кафе «Капулад», были на самом деле бывалыми знатоками математической игры. Они умело играли в нее, еще учась в Высшей нормальной школе, самом элитном учебном заведении Франции. Однажды Рауль Юссон, один из собравшихся, в шутку переоделся бородатым профессором, взобрался на кафедру и принялся «читать лекцию», громоздя при этом одну ошибку на другую. В задачу слушателей входило разоблачение этих ошибок. Все нашли это развлечение очень остроумным. Больше всего слушателям тогда понравилась бредовая формулировка, которую самозваный профессор назвал «теоремой Бурбаки». Собственно, каждую свою вымышленную теорему Рауль Юссон называл каким-нибудь громким именем фиктивного математика. На самом деле он использовал для этого имена генералов французской армии. Теорему Бурбаки он, например, назвал по имени сражавшегося во время Франко-прусской войны 1870–1871 гг. генерала Шарля Дени Бурбаки. В память о своих тогдашних студенческих выходках теперешние юные профессора, сидевшие в кафе «Капулад», решили спрятаться за псевдонимом Бурбаки: вымышленный математик Никола Бурбаки должен был как автор украсить титул нового учебника. Позже они утверждали, что этот Никола Бурбаки был членом Академии наук Нанкаго. Собственно, Нанкаго был реальным городом не в большей степени, чем математик Бурбаки — реальным человеком. Это был неологизм, сфабрикованный из названий Нанси и Чикаго, названий двух университетских городов, где работали некоторые члены группы, скрывавшейся за псевдонимом Бурбаки.

Поначалу Бурбаки был уверен (мы не станем портить игру и притворимся, что такой математик действительно жил на свете), что напишет новый учебник за три года. Однако задача оказалась более трудоемкой, чем выглядела первоначально. Только в 1939 г. увидели свет первые тома монументального труда, озаглавленного «Начала математики» (Éléments de mathématique). В течение нескольких десятилетий продолжали выходить следующие тома «Начал математики». Эта работа так и не была окончена. Она официально скончалась, потому что ни один из членов группы был уже не в состоянии сохранять цельность и последовательность изложения. «Бурбаки — это динозавр, у которого слишком велико расстояние от головы до хвоста», — цинично заметил по этому поводу Пьер Картье, бывший членом группы Бурбаки с 1955 по 1983 г. В неизвестно кем составленном гротескном некрологе было объявлено, что Никола Бурбаки мирно скончался в Нанкаго 11 ноября 1968 г. и что погребение состоится 23 ноября в 15 часов, на «Кладбище случайных переменных».

Своим названием «Начала математики» Никола Бурбаки напоминают «Начала», первую в истории человечества книгу по математике, написанную греческим ученым Евклидом. Попутно заметим, что некоторые историки науки утверждают, что на самом деле не существовало никакого Евклида и что под этим именем скрывался коллектив ученых античной Александрии.

33

Сразу после окончания Первой мировой войны, еще до того, как Вейль написал свою пристрастную, направленную против позиции Гильберта статью, произошло одно событие, которое, при иных обстоятельствах, могло бы изменить лицо математики ХХ столетия. Дело в том, что, несмотря на расхождения во взглядах на бесконечное, Гильберт очень высоко ценил своего голландского коллегу Брауэра за его математические труды, считая его глубоким мыслителем и выдающимся ученым. Если бы они, прежде чем исступленно вгрызться в свои позиции, смогли лично встретиться и побеседовать, то, возможно, не только Вейль, но и его учитель Давид Гильберт убедился бы в правоте Брауэра. Такая возможность была, когда Брауэр, во время летних каникул, будучи в Швейцарии, посетил Вейля и воодушевил его своими воззрениями на бесконечное. Гильберт был в гостях у Вейля всего за пару дней до этого, и Брауэр послал ему открытку, в которой глубоко сожалел о том, что им не удалось встретиться лично…

34

Научный спор между Брауэром и Гильбертом начал перерастать в личную ссору, и оба математика, независимо друг от друга, обратились к Альберту Эйнштейну с просьбой выступить третейским судьей в конфликте. Эйнштейн отклонил предложение на том основании, что ему тяжело разбираться в основаниях математики, а о самом конфликте отозвался как о «войне мышей и лягушек».

35

Попытка проанализировать здесь методы Гёделя завела бы нас слишком далеко. О них подробно пишет Герман Вейль в своей переработанной книге «Философия математики и естествознания» (Philosophie der Mathematik und Naturwissenschaft). Достаточно будет сказать, что основная мысль Гёделя заключается в том, чтобы закодировать высказывания о формальной системе так, чтобы они превратились в арифметические высказывания и тем самым автоматически включились бы в систему. Примечательно, что такое кодирование выполняется с помощью простых чисел. Таким образом, простые числа играют выдающуюся роль и в изобретенном Гёделем «шифровании», которое сегодня называют «гёделизацией».

36

Темой диссертации Гёделя является полнота логического исчисления. Чистая логика, которая еще не включает в себя арифметику чисел, является полной и непротиворечивой системой. Этим утверждением Гёдель внес свой вклад в развитие программы Гильберта. Тем удивительнее смотрится на этом фоне теорема Гёделя о неполноте.

37

Яркий пример — теорема Гудстейна, с которой мы познакомились в примечании 10. В 1982 г. два британских математика Лоренс Кирби и Джеффри Брюс Парис доказали, что существует непротиворечивая математика, в которой теорема Гудстейна верна, но существует и другая непротиворечивая математика, в которой эта теорема неверна.

38

Подобное пари заключил в 1918 г. Герман Вейль со своим коллегой Дьердем Пойа в присутствии двенадцати свидетелей-математиков: Вейль утверждал, что следующие двадцать лет подавляющее большинство математиков будут заниматься своей наукой в духе, предначертанном Пуанкаре, Брауэром и им самим, а слепые аксиоматические правила игры будут отброшены, ибо они столь же бессмысленны — согласно сформулированному Вейлем и Пойа пари, — как натурфилософия Гегеля. Когда двадцать лет спустя вся компания собралась в прежнем составе, рассудить, кто выиграл спор, всем, включая и самого Германа Вейля, было ясно, что выиграл Пойа. Практически все математики занимались своей наукой так, словно были всеведущими и всемогущими властителями царства бесконечного, а если на горизонте появлялась угроза, то они прятались в мнимо безопасной гавани правил игры с аксиомами. Джон фон Нейман следующим образом описывает это положение вещей в статье «Математик» (The Mathematician), помещенной в вышедшем в 1947 г. под редакцией Р. Хейвуда сборнике «Труды разума» (The Works of Mind): «Лишь очень немногие математики оказались готовы к тому, чтобы принять новые требовательные масштабы (фон Нейман имел в виду строгую интуиционистскую математику Брауэра и Вейля) и применить их в собственной работе. Очень многие, однако, признавали, что, на первый взгляд, Вейль и Брауэр были правы. Сами же они (математики) продолжали следовать старым, “простым” методам, вероятно, в надежде, что когда-нибудь кто-нибудь найдет ответ на интуиционистскую критику и апостериори их труд будет оправдан в глазах потомков».

«В настоящее же время, — пишет далее фон Нейман в той же статье, — спор об “основах” далеко не окончен, но представляется весьма маловероятным, что, если не считать незначительного меньшинства, математики откажутся от классической системы».

Дальше фон Нейман без обиняков, прямо и откровенно пишет: «Все это происходило при моей жизни, и я знаю, как унизительно легко менялись на фоне этих событий мои взгляды на абсолютную математическую истину. Я менял их трижды!»

Волей-неволей Вейлю пришлось признать, что заключенное с Пойа двадцать лет назад пари он проиграл. Пойа, однако, великодушно разрешил Вейлю не публиковать сообщение об этой ошибке. Только один человек из всех присутствующих, от которых зависел исход пари, не проголосовал за Пойа. Этим человеком был Курт Гёдель.