–24 кал/°C), а D – количественная мера атомной неупорядоченности рассматриваемого тела. Дать точное краткое определение количества D, не прибегая к технической терминологии, не представляется возможным. Подразумеваемый ею беспорядок частично объясняется тепловым движением, частично – существованием произвольной, а не четко разделенной смеси различных атомов или молекул, как, например, молекул сахара и воды в приведенном выше примере. Данный пример хорошо иллюстрирует уравнение Больцмана. Постепенное «распространение» сахара по всему объему воды повышает неупорядоченность D, а следовательно (поскольку логарифм D возрастает вместе с D), энтропию. Также очевидно, что любой приток теплоты усиливает тепловое движение, то есть повышает D – и энтропию. Особенно наглядно это демонстрирует плавление кристалла: вы разрушаете аккуратную и стабильную организацию атомов или молекул и превращаете кристаллическую решетку в непрерывно изменяющееся случайное распределение.
Изолированная система или система в однородной среде, которую мы пока будем считать частью рассматриваемой системы, повышает свою энтропию и относительно быстро приближается к инертному состоянию максимума энтропии. Теперь мы видим, что этот фундаментальный закон физики лишь отражает естественное стремление вещей к хаосу, какую проявляют библиотечные книги или стопки бумаг и рукописей на столе, если этому не противостоять. В данном случае аналогом беспорядочного теплового движения являются наши руки. Они трогают эти предметы, не заботясь вернуть их на прежнее место.
Как выразить в терминах статистической теории удивительную способность организма замедлять стремление к термодинамическому равновесию (смерти)? Прежде мы говорили: «Организм питается отрицательной энтропией», – будто он привлекает к себе ее поток, чтобы скомпенсировать рост энтропии, обусловленный жизнедеятельностью, и тем самым сохранить постоянный, достаточно низкий уровень энтропии.
Если D – мера беспорядка, то обратная ей величина, 1/D, может считаться прямой мерой порядка. Поскольку логарифм 1/D равен отрицательному логарифму D, можно записать уравнение Больцмана следующим образом:
– (энтропия) = k log (1/D).
Теперь неуклюжее выражение «отрицательная энтропия» можно перефразировать более удачно: энтропия с отрицательным знаком есть мера порядка. Поэтому способ, которым организм постоянно поддерживает весьма высокий уровень упорядоченности (= весьма низкий уровень энтропии), в действительности заключается в непрерывном потреблении упорядоченности из окружающей среды. Этот вывод не столь парадоксален, сколь кажется на первый взгляд. Скорее его можно упрекнуть в тривиальности. На самом деле, в случае высших животных мы прекрасно знаем, какую упорядоченность они потребляют. Речь идет о высокоупорядоченном состоянии вещества в относительно сложных органических соединениях, которые служат им пищей. После использования животные возвращают вещество в деградированном виде – однако не в полностью деградированном, поскольку растения могут употребить его. Естественно, растения получают мощную дозу отрицательной энтропии в виде солнечного света.
Рассуждения об отрицательной энтропии встретили сомнения и неприятие со стороны моих коллег-физиков. Первым делом скажу, что если бы я желал угодить только им, то обсуждал бы свободную энергию. В данном контексте это более привычный термин. Однако это сугубо техническое выражение показалось мне лингвистически слишком близким к энергии, чтобы донести до обычного читателя разницу между двумя этими понятиями. Скорее всего, он бы воспринял свободную как лишенный особого смысла эпитет, в то время как это весьма сложная концепция, и ее связь с принципом упорядоченности-неупорядоченности Больцмана тяжелее проследить, чем в случае энтропии и «энтропии с отрицательным знаком», которая, кстати, придумана не мной. Именно к ней обращался Больцман в своей изначальной дискуссии.
Однако Ф. Саймон[37] уместно отметил, что мои простые термодинамические рассуждения не могут объяснить необходимости питаться материей «в крайне высокоупорядоченном состоянии, содержащей относительно сложные органические соединения», а не древесным углем или алмазной пульпой. Он прав. Но я должен объяснить непрофессиональному читателю, что кусок несожженного угля или алмаза в сочетании с количеством кислорода, необходимым для его горения, в понимании физика также находится в крайне высокоупорядоченном состоянии. Представьте: при реакции – горении угля – выделяется много тепла. Рассеивая ее в окружающей среде, система избавляется от существенного прироста энтальпии, вызванного данной реакцией, и достигает состояния, в котором ее энтропия примерно равняется исходной.
Однако мы не можем питаться образующимся в ходе этой реакции углекислым газом. А потому Саймон справедливо утверждает, что энергетическая ценность пищи имеет значение, и, следовательно, мои насмешки над меню, в которых указана эта ценность, неуместны. Энергия нужна, чтобы возместить не только механическую энергию наших телесных усилий, но и тепло, какое мы непрерывно отдаем окружающей среде. И факт, что мы излучаем тепло, не случаен, но существенен. Именно таким образом мы избавляемся от избыточной энтропии, которую постоянно производим в ходе жизнедеятельности.
Казалось бы, из этого следует, что более высокая температура тела теплокровных животных предполагает полезную способность быстрее избавляться от энтропии, а потому вести более интенсивную жизнь. Я не уверен, что это соответствует действительности (и таково мое мнение, не Саймона). Можно возразить, что многие теплокровные организмы защищены от быстрой потери тепла шерстью или перьями. И потому параллель между температурой тела и «интенсивностью жизни», которая, как я считаю, существует, может в большей степени объясняться законом Вант-Гоффа: более высокая температура сама по себе ускоряет химические реакции в живом организме. Это подтверждают эксперименты на биологических видах, принимающих температуру окружающей среды.
Глава 7Основана ли жизнь на законах физики?
Если человек никогда не противоречит сам себе, значит, он почти все время молчит.
В этой последней главе я хочу разъяснить следующее: на основании всего, что мы узнали о структуре живой материи, нам нужно быть готовыми к тому, что механизмы ее работы не удастся свести к обычным физическим законам. И дело не в том, что некая «новая сила» направляет поведение отдельных атомов в живом организме. Его строение отличается от того, что мы изучили в физической лаборатории. Грубо говоря, инженер, знакомый лишь с тепловыми двигателями, должен быть готов к тому, что, изучив конструкцию электрического двигателя, обнаружит, что тот работает по еще не известным ему принципам. Инженер увидит медь, знакомую ему по котлам, в виде очень длинной проволоки, намотанной на катушки. Привычное по рычагам, стержням и паровым цилиндрам железо будет заполнять сердцевины этих медных катушек. Инженер не усомнится, что это те же медь и железо, подчиняющиеся тем же законам природы, и будет прав. Различия в конструкции окажется достаточно, чтобы подготовить его к совершенно иному принципу работы. Он не подумает, будто электрический мотор крутит призрак, потому что тот начинает вращаться при повороте переключателя, без котла и пара.
Ход событий в жизненном цикле организма обладает восхитительной регулярностью и порядком, с которыми не сравнится ничто из того, что мы наблюдаем в неодушевленной материи. Им управляет в высшей степени упорядоченная группа атомов, представляющих лишь небольшую часть атомов в клетке. Более того, согласно сформированному нами взгляду на механизм мутаций, мы полагаем, что перемещение нескольких атомов из «правящей» группы зародышевой клетки способно привести к определенному изменению в крупномасштабных наследственных характеристиках организма.
Эти факты являются едва ли не самыми интересными из всех, что выявила современная наука. Вероятно, они не столь уж неправдоподобны. Удивительная способность организма сосредотачивать на себе «поток упорядоченности» и тем самым избегать атомарного хаоса – «пить порядок» из подходящего источника, – судя по всему, связана с наличием «апериодических твердых веществ», хромосомных молекул, которые, без сомнения, олицетворяют высшую – намного выше, чем в обычном периодическом кристалле – степень упорядоченности известных нам атомных ассоциаций в силу особой роли каждого атома и группы.
Перед нами свидетельство того, что существующий порядок обладает силой поддерживать себя и вызывать упорядоченные явления. Это звучит правдоподобно, хотя в данном случае мы, несомненно, опираемся на опыт социального устройства и иные события, связанные с активностью организмов, что напоминает порочный круг.
Еще раз подчеркну, что для физика такое состояние дел выглядит не только правдоподобным, но и многообещающим, потому что у него нет прецедентов. Вопреки расхожему мнению, регулярный ход событий, подчиняющихся физическим законам, никогда не является следствием существования одной упорядоченной конфигурации атомов – если только она не повторена многократно, как это бывает в периодическом кристалле или жидкости либо газе, состоящем из большого числа одинаковых молекул.
Даже работая с очень сложной молекулой in vitro, химик всегда имеет дело со множеством таких молекул. К ним применимы его законы. Например, он может сказать, что через минуту после того, как начнется некая реакция, прореагирует половина молекул, а через еще минуту – три четверти. Однако он не сумеет определить, окажется ли одна конкретная молекула (если бы мы могли проследить ее судьбу) среди тех, что прореагировали, или тех, что остались неизменными. Это вопрос вероятности.