меть неокортекс – отдел мозга, похожий на цветную капусту, на котором заметны извилины и борозды. Слово «неокортекс», если переводить его латинские корни, означает «новая кора» и обозначает новый слой серого вещества, который считается частью мозга позвоночных, появившейся в ходе эволюции самой последней. Он есть только в мозге млекопитающих.
Если неокортекс – вместилище сознания и им обладают только млекопитающие, из этого следует, что только они обладают и сознанием[245]. Но здесь есть одна большая загвоздка. Птицы лишены неокортекса, однако свидетельства существования сознания у птиц общепризнаны. Познавательные достижения птиц включают изготовление инструментов, удержание в памяти месяцами местоположения многочисленных спрятанных предметов, категоризацию объектов в соответствии с их общими характеристиками (вроде цвета и формы), узнавание голоса по прошествии нескольких лет, использование имен для призыва молодняка обратно в гнездо на закате, оригинальные игры вроде катания с сугробов или автомобильных стекол, а также хитроумные проказы – такие, как кража бутербродов и стаканчиков с мороженым у ничего не подозревающих туристов. Сознательные действия птиц оказались настолько впечатляющими[246], что классификация вошедших в поговорку «птичьих мозгов» была пересмотрена в 2005 году, чтобы отразить параллельный путь эволюции, который избрал птичий палеокортекс (древняя кора), позволяющий птицам проявлять познавательную активность на уровне, сопоставимом с млекопитающими. Птицы сокрушили идею о том, что живому существу нужен неокортекс, чтобы осознавать что-либо, обладать опытом, делать нечто умное, – или чувствовать боль.
Если какое-то животное без неокортекса все же оказывается способным сознавать, это опровергает представление о том, что наличие сознания требует присутствия неокортекса. По сути, для заявления о том, что рыбы лишены сознания, нет никаких оснований. «Существует много способов приобрести сложное сознание, – говорит невролог Лори Марино из Университета Эмори. – Предположение о том, что рыбы не могут чувствовать боль, потому что у них нет необходимых анатомических особенностей нервной системы, напоминает аргумент о том, что воздушные шары не могут летать, потому что у них нет крыльев»[247]. Люди не могут плавать, потому что у них нет плавников?
Ответ рыб на наличие коры головного мозга у млекопитающих – паллиум[248], который примечателен своим удивительным разнообразием и сложностью[249]. Хотя паллиум среднестатистической рыбы обладает меньшей вычислительной мощностью, чем неокортекс среднестатистического примата, все более и более очевидно, что у рыб паллиум выполняет сходные функции, что неокортекс у млекопитающих и палеокортекс у птиц. В дальнейшем мы рассмотрим эти способности, но пока позвольте мне просто упомянуть обучение, память, распознавание индивидов, игру, использование орудий и совместную деятельность.
Давайте рассмотрим ситуацию, когда рыба раз за разом попадается на крючок, причем делает это быстро. «Истории о большеротых окунях, которые были пойманы и отпущены, но лишь затем, чтобы развернуться и вновь оказаться пойманными в этот же или на следующий день, иной раз даже не по одному разу», – пишет биолог Кейт А. Джонс в книге, посвященной ужению большеротого окуня[250]. Понятно, что некоторые рыбаки утверждают, будто это – подтверждение тому, что опыт попадания на крючок не наносит рыбе травму. Иначе почему же они так быстро вновь схватывают наживку? (В этот момент мы могли бы спросить: почему рыба раз за разом возвращалась к руке человека, ища ласки, если она ничего не может чувствовать?)
Но есть и понятие «боязнь крючка», знакомое многим рыболовам. Существуют исследования, в ходе которых проходило достаточно долгое время, прежде чем рыбы возвращались к нормальной жизни после поимки на удочку. Карпы и щуки избегали наживки до трех лет после того, как всего лишь один раз попались на крючок[251]. Серия тестов на большеротых окунях показала, что они тоже быстро учились избегать крючков и продолжали бояться крючка в течение шести месяцев[252]. Существуют также исследования, в ходе которых рыбы возвращались к тому, что выглядело как нормальное поведение, через несколько минут после того, как подвергались инвазивным процедурам вроде хирургического вмешательства для вживления радиомаячка, чтобы отслеживать их перемещения в дикой природе. Я просто не в состоянии понять, как это должно бросать тень сомнения на наличие боли у рыб. Очень голодная рыба, которая ощущает боль, не прекращает хотеть есть, поэтому побуждение кормиться может перевесить тормозящее действие травматической боли.
В интервью 2014 года Кулум Браун, который исследует познавательные способности и поведение рыб в Департаменте биологических наук Университета Маккуори в Сиднее, сказал по поводу явления повторного попадания на крючок следующее:
Им надо есть. В мире существует слишком много неопределенности, чтобы позволять пище уйти. Многие клюнут, даже когда будут совершенно сытыми. ‹…› Люди часто говорят мне: «Но я же продолжаю вылавливать одну и ту же рыбу». Ладно, согласен. Но если вы голодали, и кто-то продолжал подкладывать рыболовный крючок вам в гамбургер (скажем, крючок будет в одном из каждых десяти), что вы стали бы делать? Вы продолжите есть гамбургеры, потому что если вы этого не сделаете, то умрете голодной смертью[253][254].
Вопрос боязни крючка мало что доказывает, поэтому ученые и философы, вероятно, будут еще долго продолжать споры о сознании у животных. Чтобы изучить рыбьи способности к ощущению, стоило бы рассмотреть научные исследования боли у рыб. По этой теме существует значительное количество материала, из которого в рамках этой книги я могу привести в пример лишь малую часть. К числу самых тщательных относятся эксперименты с одной из костных рыб – радужной форелью, выполненные Брайтвейт и Снеддон. Их итоги подведены в книге Виктории Брайтвейт «Чувствует ли рыба боль?» (Do Fish Feel Pain?)[255].
Первый шаг в исследовании способности рыб чувствовать боль – узнать, есть ли у них для этого соответствующие приспособления. Какие типы нервной ткани имеются у рыб и работает ли она так, как ожидалось бы от животного, наделенного ощущениями?
Чтобы это выяснить, форелей подвергли глубокой и необратимой анестезии (они находились без сознания на протяжении всего эксперимента, а затем были убиты путем передозировки анестезирующего вещества по его окончании), и их нервы были выведены наружу хирургическим путем. Был исследован тройничный нерв – самый крупный из черепных нервов, который имеется у всех позвоночных и отвечает за чувствительность тканей головы и моторные функции вроде кусания и жевания; оказалось, что он содержит одновременно A-дельта и C-волокна. У людей и других млекопитающих эти волокна связаны с двумя типами болевого ощущения: A-дельта-волокна сигнализируют об острой начальной боли во время ранения, тогда как C-волокна сигнализируют о более тупой, пульсирующей боли, которая следует за ней. Интересно, что исследователи обнаружили, что у форели доля C-волокон была значительно ниже (около 4 %), чем обнаруженная у других исследованных позвоночных (от 50 до 60 %). Это позволяет предположить, что, по крайней мере, у форелей постоянная боль после исходного ранения могла быть менее серьезной. Но отличие в их соотношении может мало что означать[256], поскольку, как отметила Линн Снеддон, A-дельта-волокна форели работают таким же образом, как C-волокна у млекопитающих, реагируя на самые разнообразные вредные раздражители.
Затем исследовательская команда захотела выяснить, активизируют ли тройничный нерв болевые раздражители, нанесенные на кожу форели. Это было сделано путем стимуляции[257] тройничного узла – области, где сходятся три чувствительные ветви тройничного нерва. Микроэлектроды вводились в тела отдельных нервных клеток нервного узла, а затем к рецепторным областям на голове и морде применялись три вида раздражителей: механический (прикосновение), тепловой и химический (слабая уксусная кислота). Все они вызывали быстрые вспышки активности в тройничном нерве, что регистрировалось как электрические сигналы в электродах. Одни нейроны отвечали на все три типа раздражителей, другие – на один или два. Это позволило ученым сделать важный вывод: у форели имеются соответствующие приспособления, чтобы реагировать на различные типы потенциально болезненных происшествий: механическое повреждение (вроде пореза или укола), ожог или химическое повреждение (от кислоты).
Обладание приспособлениями для ощущения боли – надежное основание для вывода о том, что организм наделен способностью чувствовать, но это не последнее слово. Даже в свете накопленных на данный момент свидетельств по-прежнему может выясниться, что нейроны, нервные узлы и мозг рыб способны лишь регистрировать негативный раздражитель рефлекторным путем, без всякого психологического ощущения боли.
В следующей фазе экспериментов форели подвергались одному из четырех способов воздействия. После вылова сетью и последовавшей за этим быстрой анестезии им: (1) делали в рот (под кожу) инъекцию пчелиного яда, (2) делали инъекцию уксуса, (3) делали инъекцию нейтрального соляного раствора или (4) подвергали похожему обращению, но без инъекций. Манипуляции 3 и 4 позволили исследователям исключить эффекты, связанные с манипуляцией рыбами и уколом иглой. Затем форели были возвращены в аквариум, где проживали до этого, и за ними наблюдали из-за черного занавеса, чтобы больше их не тревожить. Ученые измеряли темп движения жаберных крышек, проверяя, насколько быстро те открываются и закрываются: это измерение известно по более ранним исследованиям как хороший индикатор дистресса