Только из опыта формы можно постичь переживание бесформенного, а без переживания «пустоты», или шуньяты, ценность формы теряет свое динамичное, живое значение[204].
Слияние этих противоположностей в рамках единого целого одна из буддийских сутр описывает так.
Пустота неотлична от формы, форма неотлична от пустоты; что форма — то пустота, что пустота — то форма[205].
Теории поля не только дали нам новый взгляд на субатомные частицы, но и решительно изменили наши представления о силах, действующих между ними. Первоначально поле связывалось с понятием силы, и даже в квантовой теории поля оно связано с силами взаимодействующих частиц. Например, электромагнитное поле может представляться в виде «свободного поля» в форме перемещающихся волн, или фотонов, или играть роль силового поля между заряженными частицами. В последнем случае наличие поля проявляется в обмене фотонами между заряженными частицами. Взаимное отталкивание двух электронов происходит благодаря фотонному обмену между ними.
На первый взгляд такая трактовка понятия силы очень сложна. Но стоит взглянуть на пространственно-временную диаграмму, как всё сразу же становится понятнее. На рисунке 34 изображены два электрона, сближающиеся друг с другом, один из которых испускает фотон (γ) в точке А, а второй поглощает его в точке В.
Рис. 34. Взаимное отталкивание двух электронов в рамках фотонного обмена
Испустив фотон, первый электрон меняет скорость и направление движения, что проявляется в изменении наклона его мировой линии. Второй делает то же, поглощая фотон. В результате электроны разлетаются в разные стороны. Их взаимное отталкивание выражается в обмене фотоном. Полное взаимодействие электронов включает обмен несколькими фотонами, вследствие чего отталкивание происходит не резко, как на графике, а плавно. При этом электроны движутся по изогнутым дугам.
Классическая физика объяснила бы эту ситуацию действием отталкивающих сил, воздействующих на оба электрона. Сейчас такой подход представляется крайне неточным. При сближении электронов ни один из них не ощущает воздействия какой бы то ни было силы. Между ними происходит только обмен фотонами. Следовательно, понятие силы больше не действует в субатомном мире. Это понятие из классической физики, которое мы ассоциируем (пусть и подсознательно) с ньютоновскими представлениями о силах, действующих на расстоянии. В субатомном мире таких сил нет. Их заменяет взаимодействие между частицами посредством полей, т. е. других частиц. Поэтому физики предпочитают говорить о взаимодействиях, а не о силах.
Согласно квантовой теории поля, все взаимодействия сводятся к обмену частицами. В случае электромагнитного взаимодействия в обмене участвуют фотоны. При более сильных взаимодействиях между нуклонами внутри ядра в обмен вовлекаются новые частицы — «мезоны», которые принимают участие в обменах между протонами и нейтронами. Они бывают разных типов. Чем ближе друг к другу нуклоны, тем тяжелее мезоны, которыми они обмениваются, и тем их больше. Взаимодействия нуклонов и свойства мезонов явно связаны друг с другом, а сами мезоны взаимодействуют, обмениваясь другими частицами. Поэтому фундаментальное понимание природы внутриядерных сил невозможно без знания всего спектра субатомных частиц.
В квантовой теории поля все взаимодействия частиц можно представить в виде пространственно-временных диаграмм, сопроводив каждую математической формулой, которая позволяет вычислить вероятность возникновения соответствующего процесса. Точное соответствие между диаграммами и их аналитическим выражением было установлено в 1949 г. американским физиком-теоретиком Ричардом Фейнманом, потому они и называются диаграммами Фейнмана. Важнейшая составляющая квантовой теории поля — объяснение процессов возникновения и уничтожения частиц. Например, фотон на рис. 35 создается в процессе эмиссии в точке А, а уничтожается при его поглощении в точке В.
Рис. 35. Путь фотона
Этот процесс можно понять только в рамках релятивистской теории, где частицы рассматриваются не как неделимые тела, а скорее, как динамические схемы с определенным количеством энергии, которая может перераспределяться при образовании новых схем.
Возникновение частицы, обладающей массой, возможно только при наличии такого количества энергии, которое эквивалентно массе этой частицы, например в процессе столкновения. При сильных взаимодействиях, которые могут происходить внутри атомного ядра, скажем, между двумя нуклонами, такая энергия не всегда присутствует. Это делает обмены массивными мезонами почти невозможным. И всё же они иногда происходят. Так, два протона могут обменяться «пи-мезоном», или «пионом», масса которого составляет около одной седьмой массы протона.
Рис. 36. Обмен пионом (π) между двумя протонами (p)
Обменные процессы такого рода происходят, несмотря на недостаточное количество энергии для возникновения мезона. Причину следует искать в «квантовом эффекте», связанном с принципом неопределенности. Как уже говорилось выше, субатомные явления, происходящие в течение небольшого промежутка времени, характеризуются большой неопределенностью в энергетическом отношении. Мезонные обмены, т. е. возникновение и уничтожение мезонов, тоже относятся к таким процессам. Их течение столь кратковременно, что неопределенность энергии достаточно велика для возникновения мезонов. Последние называются «виртуальными» частицами. Они отличаются от «настоящих», возникающих при столкновениях, тем, что могут существовать недолго в силу принципа неопределенности. Чем тяжелее мезоны (чем больше энергии необходимо для их возникновения), тем короче процесс обмена. Поэтому нуклоны могут обмениваться тяжелыми мезонами, только когда находятся на очень небольшом расстоянии друг от друга. А обмен виртуальными фотонами может иметь место и на большом удалении, поскольку фотоны в силу нулевой массы покоя возникают при наличии бесконечно малых энергий. Анализ ядерных и электромагнитных сил, проведенный японским физиком Хидэки Юкава[206] в 1935 г., позволил не только предсказать существование пиона за 12 лет до его экспериментального обнаружения, но и приблизительно оценить его массу исходя из величины ядерной силы.
Квантовая теория поля изображает все взаимодействия как процессы обмена виртуальными частицами. Чем сильнее взаимодействие между частицами, тем вероятнее обмен и тем чаще он происходит. Но роль виртуальных частиц не ограничивается участием в подобных взаимодействиях. Их может испускать любой нуклон, который вскоре затем ее поглощает. Ничто не может помешать этому при условии, что возникший мезон исчезает за время, определяемое принципом неопределенности. На рисунке 37 приведена диаграмма Фейнмана, на которой изображен процесс испускания и уничтожения пиона.
Рис. 37. Нейтрон (n) испускает и вновь поглощает пион
Вероятность таких процессов, получивших название «самовзаимодействия», для нуклонов очень велика: они находятся в сильном взаимодействии. Нуклоны испускают и поглощают виртуальные частицы постоянно. Теория поля рассматривает их как центры постоянной активности, окруженные «облаками» виртуальных частиц. Виртуальные мезоны «живут» совсем недолго, поэтому не могут удалиться на большое расстояние от нуклона. Мезонное облако очень невелико. Внешние области облака заполнены легкими мезонами (главным образом пионами), а более тяжелые поглощаются нуклоном быстрее, поэтому подвергаются «прижиманию» ближе к центру облака.
Каждый нуклон окружен облаком виртуальных мезонов, которые существуют очень недолго. Но при некоторых условиях они могут превратиться в мезоны реальные. Если нуклон сталкивается с другой частицей, движущейся с высокой скоростью, кинетическая энергия этой частицы может перейти к виртуальному мезону и оторвать его от облака. Таков механизм образования настоящих мезонов при столкновении частиц с участием высоких энергий. Два нуклона могут сблизиться настолько, что их облака частично перекроются друг с другом, и тогда некоторые виртуальные частицы могут не возвращаться к тому нуклону, который их испустил, а «перепрыгнуть» в соседнее облако и быть поглощенными другим нуклоном. Таков механизм обмена частицами при сильных взаимодействиях.
Ясно, что взаимодействия частиц, а следовательно, и силы, действующие между ними, зависят от состава виртуальных облаков этих частиц. Дистанция взаимодействия, т. е. расстояние между частицами, при котором оно возникает, определяется свойствами частиц, составляющих облака. Например, электромагнитные силы зависят от наличия виртуальных фотонов «внутри» заряженных частиц, а сильные взаимодействия между нуклонами происходят в результате присутствия «внутри» последних виртуальных пионов и других мезонов. Теория поля рассматривает силы, действующие между частицами, как исходные свойства самих частиц. Понятия силы и материи, которые резко противопоставлялись друг другу в греческом и ньютоновском атомизме, теперь представляются происходящими из одних и тех же динамических паттернов, которые мы называем частицами.
Такой подход к пониманию силы характерен и для восточного мистицизма, в учениях которого движение и изменение рассматриваются как основные исходные свойства всех вещей. «Все вращающиеся тела, — говорит Чжан Цзай о небесах, — обладают природной силой. Поэтому их движение не является навязанным извне»[207]. В «И цзин» утверждается, что природные законы не являются внешними силами по отношению к вещам: они воплощают гармонию движения, свойственную вещам[208].
Это древнее китайское определение силы как воплощения гармонии движения, свойственной самим вещам, представляется особенно адекватным в свете положений квантовой теории поля, которая характеризует силы взаимодействия между частицами как проявления динамических паттернов (виртуальных облаков), присущих частицам.